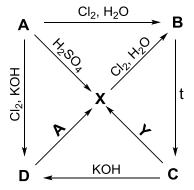

Ленинградская область, 2019

11 класс

Максимальный балл: $10 \times 5 = 50$ баллов.

1. (10 баллов) Дибензилбутан – органическое соединение, каркас которого лежит в

основе класса природных соединений, называемых лигнанами, содержащихся в растениях и их плодах. Справа представлена схема синтеза, позволяющая получить дибензилбутан в лаборатории.



Известно, что соединение \mathbf{A} является распространённым углеводородным растворителем. Предложите механизм образования вещества \mathbf{F} из \mathbf{E} . Какой геометрический изомер соединения \mathbf{E} преимущественно образуется в реакции получения его из \mathbf{D} ? Приведите структурные формулы соединений \mathbf{A} – \mathbf{F} , назовите соединения \mathbf{B} – \mathbf{F} по номенклатуре ИЮПАК.

2. (10 баллов) Вещества **A–D** содержат в своем составе элемент, образующий простое вещество **X**. Соединения этого элемента широко применяются в медицинских целях. **A** и **C** – бинарные вещества, **Y** – ядовитый газ без запаха с плотностью по воздуху 0.966.

Известно, что **A** и **B** – сильные кислоты, а массовая доля элемента, образующего **X**, в соединениях **B**, **C** и **D** составляет 72.16%, 76.05% и 59.34% соответственно.

- 1) Расшифруйте вещества А-D, X, Y.
- 2) Приведите уравнения всех реакций, указанных на схеме.
- 3) Приведите пример использования газа ${\bf Y}$ в химической промышленности.

3. (10 баллов) Химику Васе на Новый год подарили книгу «Высокомолекулярные соединения». Заинтересовавшись этой тематикой, он решил получить фенолформальдегидную смолу, для чего ему потребовались вещества **B** и **C**. **B** он решил получить из вещества **A**, массовое содержание азота в котором составляет 15.05%; также ему потребовалась неорганическая кислота **H**, содержащая элемент **X** [ω (**X**) = 97.26%], и натриевая соль **E**. Из **A**, **H** и **E** Вася надеялся синтезировать малостабильное промежуточное вещество **D**, нагревание которого в растворе серной кислоты привело бы к веществу **B**. Вещество **C** Вася пытался получить путем окисления **M** кислородом воздуха.

К сожалению, планы Васи не сбылись. Синтез **B** у него не удался по причине того, что соединение **E** массой 3.45 г окислилось на воздухе до чилийской селитры. При этом Вася выяснил, сперва проведя сушку селитры, что масса навески увеличилась на 0.8 г. Предположите, почему Васе не удалось получить **C**? Определите все зашифрованные в задаче вещества. Ответ подтвердите расчетами, если известно, что массовая доля элемента **X** в соединении **D** составляет 25.27%, а **M** принадлежит ряду $C_nH_{2n+2}O$ и смешивается с водой.

4. (10 баллов) Зависимость константы скорости реакции от температуры можно выразить при помощи уравнения Аррениуса: $k = Ae^{-\frac{E_a}{RT}}$, где A – предэкспоненциальный множитель, e – экспонента (приближенно равна 2.718), E_a – энергия активации, R – газовая постоянная, T – температура. Было проведено экспериментальное изучение бимолекулярной реакции

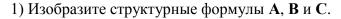
${\bf B}_{(\Gamma)} + {\bf C}_{(\Gamma)} = 2{\bf D}_{(\Gamma)}$, полученные данные	представлены в таблице:
---	-------------------------

Т, К	$igl[\mathbf{B}_{(\Gamma)} igr]$, моль/мл	$igl[oldsymbol{C}_{(\Gamma)} igr]$, моль/мл	$oldsymbol{v}$, моль/(мл·с)
417.9	11.0	18.0	127
520.1	2.86	37.4	241

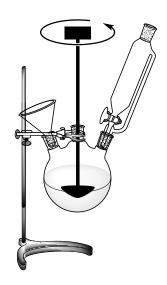
- 1) Запишите кинетическое уравнение рассматриваемой реакции.
- 2) Рассчитайте по уравнению Аррениуса предэкспоненциальный множитель и энергию активации. Какую размерность они имеют?
- 3) Определите на сколько процентов будет отличаться рассчитанная константа скорости реакции по уравнению Аррениуса при температуре 666.8 K, если ее экспериментальное значение равно 6.59 мл/(моль·с).

5. «Мысленный эксперимент» (10 баллов)

Кислота **С** является исходным веществом для некоторых фармацевтических препаратов. Например, по реакции этерификации из нее получают соединение, которое используется для лечения атеросклероза. Ниже приведен метод синтеза **С** и схема необходимой установки.


Вся работа проводится строго в хорошо работающем вытяжном шкафу. В трехгорлую колбу объемом 1 л помещается 53 г **A** и 100 мл водного раствора 24.5 г NaCN. В течение 15 мин через капельную воронку прикапывается 335 мл насыщенного раствора NaHSO₃

Ленинградская область, 2019


(создаётся избыток гидросульфита натрия), при этом после первых добавленных капель засыпается лед: понижение температуры препятствует протеканию побочной реакции. Все время реакционная смесь перемешивается механической мешалкой.

Образующаяся жидкость **В** [ω (N) = 10.526%] не смешивается с водой и легко отделяется от водной фазы. К В добавляют избыток концентрированной соляной кислоты и через 12 ч упаривают досуха. После отделения всех побочных компонентов получают 76 г С.

Вещество А вступает в реакцию серебряного зеркала, но не присоединяет бромоводород, его брутто-формула С₇Н₆О. Примите, что все реакции протекают количественно.

- 2) Напишите уравнение реакции **A** с аммиачным раствором оксида серебра.
- 3) Какова роль NaHSO₃ в реакции получения **В**?

