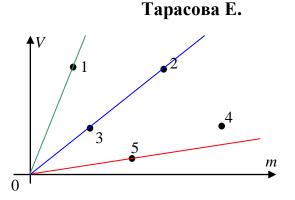

7 класс

1. Где тут плотность?

В лаборатории провели измертния массы и объема пяти тел, изготовленных из четырех материалов: березы, $\rho_{\rm B}=0.7~{\rm г/cm}^3$, алюминия, $\rho_{\rm A\pi}=2.7~{\rm r/cm}^3$, железа, $\rho_{\rm W}=7.8~{\rm r/cm}^3$ и свинца, $\rho_{\rm C}=11.3~{\rm r/cm}^3$.

Затем результаты нанесли на график, по одной оси которого отложили объемы тел V_i , а по другой их массы m_i . Здесь индекс і может принимать значения 1, 2, 3, 4, 5 — соответственно номерам точек на графике. К сожалению, со временем масштаб по осям был утрачен, а экспериментаторы в спешке забыли записать, какому веществу какая экспериментальная точка соответствует. Определите:


- из какого материала изготовлено тело самой большой массы?
- у тела с каким номером была самая маленькая плотность? Чему она равна?
- какой точке соответствует тело, изготовленное из свинца?
- какие тела сделаны из одинакового материала? Определите из какого.

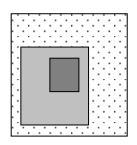
Примечание! Применять свои линейки для нанесения на график масштаба нельзя. Подобные решения будут оценены в ноль баллов.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

Возможное решение

Самой большой массой обладает тело 4. Его координата по оси m самая большая. По определению, плотность $\rho = m/V$. На данных осях точки для всех тел, обладающих одинаковой плотностью, должны лежать на одной прямой проходящей через начало координат, так

как для них (автоматически) равно отношение m/V. Из этого следует, что плотности тел 2 и 3 одинаковы. Чем больше плотность тела, тем больше отношение m/V, а прямая, идущая из начала координат через эти точки, должна идти под меньшим углом. Из этого следует, что самая маленькая плотность у тела 1, а самая большая у тела 5. Телу 4 соответствует плотность меньшая, чем у тела 5, но большая чем у 3 и 2, следовательно, тело 4 изготовлено из железа, 5 – из свинца, 2 и 3 – из алюминия, а 1 – из березы.


Критерии оценивания

Определено тело с самой большой массой
(есть обоснование)
Идея связать плотность с углом наклона прямой из начала координат
Найдено тело с самой большой плотностью
Найдено тело с минимальной плотностью
Найдены тела с одинаковой плотностью
2 балла
Найдены тела с одинаковой плотностью

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

2. Кубик в кубе

Однородный кубик со стороной a и плотностью ρ поместили внутрь куска глины с плотностью 4ρ , которому придали форму куба со стороной 2a. Получившийся куб облепили пластилином плотностью 2ρ , в результате чего получился куб со стороной 3a (см. рисунок). Определите среднюю плотность получившейся системы.

Возможное решение

Слободянин В.

Среднюю плотность системы можно рассчитать, определив объемы глины и пластилина, и выразив их через объем $V=a^3$ маленького кубика. Заметим, что эти объемы не зависят от взаимного расположения кубика, глины и пластилина, и равны соответственно $(2^3-1^3)V=7V$ и $(3^3-2^3)V=19V$.

Тогда
$$\rho_{\rm cp} = \frac{\rho V + 4 \rho \cdot 7V + 2 \rho \cdot 19V}{27V} = \frac{67 \rho}{27} \approx 2,5 \rho \; .$$

Критерии оценивания

1.	Выражены объемы глины и пластилина (по 3 балла)	6 баллов
2.	Получена формула для расчета средней плотности	1 балл
3.	Получено значение средней плотности	3 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.

3. Встретились две трубы

На трубопрокатном заводе по конвейерам с одинаковой скоростью движутся во встречных направлениях две трубы разной длины. Мимо друг друга трубы проезжают за время $t_1 = 5$ с (время измеряется от момента, когда поравняются передние торцы труб, движущиеся навстречу друг другу, до момента, когда поравняются задние торцы). В результате поломки, один из конвейеров начал движение в обратном направлении с вдвое большей скоростью. За какое время t_2 трубы проедут мимо друг друга теперь? Рассмотрите возможные варианты.

Возможное решение

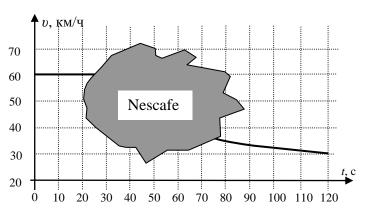
Кармазин С.

Задачу удобно решать в системе отсчета, связанной с трубой, скорость υ которой не изменялась. Обозначим длину этой трубы l_1 , а длину другой трубы l_2 . Можно считать, что встречная труба проехала мимо неподвижной, когда она переместилась на расстояние $L=l_1+l_2$. В первом случае труба двигалась со скоростью 2υ . Время $t_1=L/(2\upsilon)$ разъезда труб не зависит от того, какая именно труба находится в движении, длинная или короткая. Во втором случае, скорость подвижной трубы относительно неподвижной равна υ . В результате, время обгона составляет $t_2=L/\upsilon=2t_1=10$ с. Это время тоже не зависит от длины подвижной трубы.

Критерии оценивания

1. Выражение для времени t_1 3 балла

2. Выражение для времени t_2 3 балла


3. Численный ответ 1 балл

4. Рассмотрены разные варианты и указано, что ответ не зависит от того, какая именно труба изменила скорость 3 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \kappa$ ласс -16.00; $8 \, \kappa$ ласс -17.00.

4. Кофе на средней скорости

Машина половину пути ехала равномерно; затем, въехав 70 на плохой участок дороги, стала 60 двигаться медленнее, но тоже с постоянной скоростью. На графике приведена зависимость 20 средней скорости машины от

времени движения. К сожалению, при движении по плохой дороге на график пролили кофе, и часть информации пропала.

Определите:

- путь, пройденный машиной за все время движения;
- время движения на первой половине пути;
- величину скорости машины на втором участке;
- значение средней скорости через 60 с после начала движения.

Возможное решение

Замятнин М.

Весь пройденный путь можно найти, умножив значения средней скорости (на всём пути) на все время движения, найденные из графика:

$$v_{cp} = 30$$
 км/час = 30 000 м/3 600 с = 25/3 м/с.

Отсюда находим путь $S = v_{cp}t_0 = 25/3$ (м/с) ·120 с = 1000 м.

Половине пути соответствует расстояние 500 м. Скорость на первом участке составляет 60 км/ч = 50/3 м/с, следовательно, время движения на нем $t_1 = 500$ м:50/3 м/с = 30 с.

Время движения на втором участке $t_2 = 120 \text{ c} - 30 \text{ c} = 90 \text{ c} = (1/40) \text{ ч}$, откуда, скорость движения на нем $v_2 = 0.5 \text{ км}$:(1/40) ч = 20 км/ч.

К моменту времени 60 с машина половину времени ехала со скоростью v_1 и половину с v_2 , следовательно, $v_{\rm cp}(60\,{\rm c})=\frac{v_1+v_2}{2}=40\,{\rm km/y}$.

Критерии оценивания

1.	Найден путь, пройденный машиной	2 балла
2.	Найдено время движения на первом участке	2 балла
3.	Определена скорость движения на втором участке	3 балла
4.	Найдено значение средней скорости через 60 с	3 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$.