

Возможные решения

7 класс

На различных установках численные значения приведенных в авторских решениях величин могут существенно отличаться.

Задача 1. Скрытая масса

Поскольку магнит вблизи весов искажает их показания, невозможно определить его массу прямым взвешиванием. Положив трубку на весы, обнулим их показания кнопкой «TARE». Прикрепим магнит к концу трубки со стальным шариком и определим его массу:

$$m_{\rm M}=13{,}17\pm0{,}03$$
 г.

Установим трубку на клипсы-опоры. Измерим расстояние между ними:

$$L = 50.0 \pm 0.1$$
 cm.

С помощью магнита будем фиксировать положение шарика внутри трубки и снимать показания весов для системы с магнитом $m_1(x)$ (таб. 1).

Запишем правило моментов относительно опоры, находящейся на столе, для систем с магнитом и без:

$$m_1(x)gL = (m_{\text{III}} + m_{\text{M}})g(L - x) + m_{\text{T}}gL/2,$$
 (1)
 $m(x)gL = m_{\text{III}}g(L - x) + m_{\text{T}}gL/2.$ (2)

Вычитая из уравнения (1) уравнение (2), получим

x, cm m_1 , Γ m, Γ 55.2 65.4711.015.061.5252,3 19.0 58.1750,0

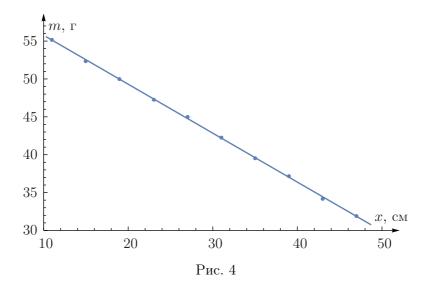
$$m(x) = m_1(x) - m_{\rm M} \frac{L - x}{L}.$$

искомую зависимость:

Показания весов m и m_1 отличаются на известную величину, что позволяет нам пересчитать значения в таблице 1.

(2)

Теоретическая зависимость, полученная из уравнения (2), имеет вид:


$$m(x) = -\frac{m_{\text{III}}}{L}x + \left(m_{\text{III}} + \frac{m_{\text{T}}}{2}\right).$$

Построив график m(x), определим массу шарика по угловому коэффициенту наклона k (рис. 4):

$$m_{\rm III} = -kL = 32.3 \pm 0.5 \text{ r.}$$

Масса трубки с шариком составляет $m_{\scriptscriptstyle \rm T}+m_{\scriptscriptstyle \rm III}=82{,}18\pm0{,}03$ г, откуда масса трубки:

$$m_{\rm T} = 59.9 \pm 0.5 \,$$
 г.

Задача 2. Пустота

Будем использовать карандаш в качестве опоры для рычага из линей-ки.

1. Оценим массу линейки. Зафиксируем длины плеч линейки примерно в отношении 1:3, расположим стаканы на равных расстояниях ($l_{\rm cr}=8~{\rm cm}$) от опоры (стаканы будут уравновешивать друг друга). В стакан на краю линейки будем доливать воду до тех пор, пока система не

придёт в равновесие. Объём налитой воды $V_{\rm B}=19$ мл. Из правила моментов получим:

$$\rho_0 V_{\scriptscriptstyle \rm B} l_{\rm ct} = m_{\scriptscriptstyle \rm J} l_{\scriptscriptstyle \rm I\!IM},$$

где $l_{\text{цм}}=10.2$ см — расстояние от центра масс линейки до карандаша, получим массу линейки $m_{\scriptscriptstyle \rm J}\approx 15$ г.

2. Для оценки массы стакана расположим пустой стакан на краю линейки. Сдвигая линейку относительно опоры, найдем положение равновесия (при длинах плеч $l_1=18.8~{\rm cm}$ и $l_2=22.2~{\rm cm}$). Центр стакана находится на расстоянии $l=16~{\rm cm}$ от точки опоры. Записав правило моментов:

$$m_{\pi} \frac{l_1}{L} \cdot \frac{l_1}{2} + m_{\text{ct}} \cdot l = m_{\pi} \frac{l_2}{L} \cdot \frac{l_2}{2},$$

найдем $m_{\rm cr} \approx 2$ г.

3. Насыпем песок в пустой стакан до определённой риски. С помощью шприца нальём в другой стакан такой же объём воды V.

Дольём в стакан с песком воду до выравнивания её уровня с уровнем поверхности песка. Определим объём полостей в песке V_{Π} и рассчитаем коэффициент пустотности:

$$\beta = \frac{V_{\text{II}}}{V} = 0.38 \pm 0.03.$$

4. Для определения плотности песка используем сухой песок известного объёма V. Уравновесим на концах линейки два стакана — один с песком, другой с необходимым для равновесия объемом воды V_0 . Масса воды будет равна массе песка, откуда искомая плотность:

$$\rho = \frac{m}{V - V_{\text{II}}} = \frac{\rho_0 V_0}{V(1 - \beta)} = 2,55 \pm 0,15 \text{ r/cm}^3.$$