

Всероссийская олимпиада по физике имени Дж. К. Максвелла

Заключительный этап Теоретический тур

Комплект задач подготовлен Центральной предметно-методической комиссией по физике Всероссийской олимпиады школьников

Авторы задач

7 класс	8 класс
1. Кармазин С.	1. Замятнин М.
2. Сеитов А.	2. Бычков А.
3. Бычков А.,	3. Замятнин М.
Корепанов Г.	4. Замятнин М.,
4. Замятнин М.	Корепанов Г.

Общая редакция — Ерофеев И., Замятнин М., Кармазин С., Слободянин В. Вёрстка — Ерофеев И., Корепанов Г., Утешев И.

354349, Краснодарский край, г. Сочи Образовательный центр «Сириус»

7 класс

Задача 1. Большой адронный коллайдер (БАК)

Кольцо большого адронного коллайдера имеет форму окружности длиной L=27 км и четыре раза пересекает границу Франции и Швейцарии в окрестности города Женева.

Протоны перед столкновением летят в коллайдере со скоростью очень близкой к скорости света $c=3\cdot 10^8$ м/с. Наименьшее время между влётами протона в Швейцарию $t_1=24$ мкс. Наименьшее время между влётами протона во Францию равно $t_2=20$ мкс. Наибольшее время однократного пребывания протона во Франции равно $t_3=56$ мкс. Какая часть длины кольца БАК находится в Швейцарии?

 $\it \Pi pume \, vanue. \ 1 \ \rm MKC = 10^{-6} \ c,$ что соответствует одной миллионной доле секунды.

Задача 2. Жуки

Однородная соломинка массой M=1 г лежит горизонтально на двух ветках, которые делят её на участки длиной $l_1=6$ см, $l_2=8$ см и $l_3=10$ см. Два небольших жука с массами $m_1=5$ г и $m_2=2$ г, сидевших на концах соломинки, одновременно начали движение навстречу друг другу со скоростями $v_1=1$ см/с и $v_2=4$ см/с (рис. 1).

- 1. Найдите силы реакции веток N_1 и N_2 , которые действовали на соломинку до старта жуков, если $g=10~{\rm H/kr}.$
- 2. Через какое время $t_{\rm K}$ после старта соломинка опрокинется, если скольжение между соломинкой и ветками отсутствует?
- 3. Какой должна быть масса соломинки M_0 , чтобы жуки всё-таки встретились?

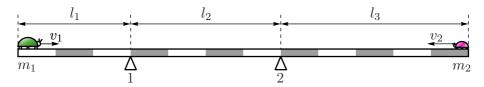


Рис. 1

Задача 3. Фиолетовые смеси

В домашней лаборатории экспериментатора Глюка в двух стаканах хранились две жидкости. В одном — синяя объёмом V и плотностью ρ , а в другом — красная с вдвое меньшим объёмом и неизвестной плотностью ρ_x . Однажды экспериментатор смешал половину синей и половину красной жидкости в колбе, получив фиолетовую смесь с плотностью $\rho_1 = 4\rho/3$. Остатки жидкостей из стаканов он смешал во второй и третьей колбе, при этом плотность смеси во второй оказалась $\rho_2 = 5\rho/4$.

- 1. Определите плотность красной жидкости ρ_x .
- 2. Найдите зависимость плотности жидкости в третьей колбе $\rho_3(U)$ от объёма U смеси в ней.
- 3. Определите, какие максимальные и минимальные значения может принимать плотность ρ_3 .

Считайте, что объём смеси равен сумме объёмов жидкостей до смешивания.

Задача 4. Требуйте долива!

Небольшое ведёрко частично погружено в воду, налитую в сосуд с вертикальными стенками. Сосуд связан с ведёрком с помощью лёгких блоков и нитей. Вся система находится в равновесии. Площадь дна сосуда S, плотность воды ρ .

- 1. На сколько изменится уровень жидкости в сосуде, если в ведёрко добавить Δm воды?
- 2. На сколько изменится уровень жидкости в сосуде, если в него добавить Δm воды?

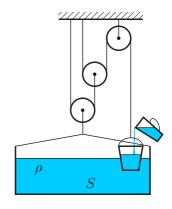


Рис. 2

- 3. На сколько изменится уровень жидкости в сосуде, если добавить $\Delta m/2$ воды в ведёрко и $\Delta m/2$ воды в сосуд?
- 4. Если суммарно добавить в сосуд и в ведёрко Δm воды, то какую долю из добавленного надо налить в ведёрко, чтобы глубина его погружения в воду не изменилась?

Ведёрко не касается дна сосуда.