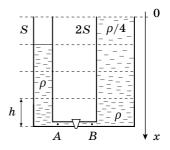


8 КЛАСС


8.1 Хорошо в деревне летом...

Восьмикласснику Васе поручили перетащить копну сена массой M=600 кг из овина в сарай, расстояние между которыми L=100 м. Известно, что скорость v мальчика обратно пропорциональна квадрату его массы m вместе с грузом и может быть выражена формулой: $v=\beta/m^2$, где β — постоянный коэффициент. Масса Васи равна $m_0=50$ кг.

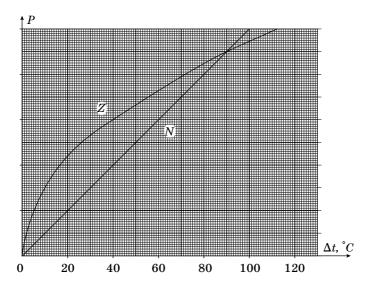
- 1. Найдите значение коэффициента пропорциональности β , если расстояние от сарая до овина мальчик (без сена) преодолевает за время $t_0=40$ с.
- 2. Определите, какое минимальное время понадобится Васе, чтобы равными порциями перенести все сено. Для этого случая найдите массу одной порции сена.

8.2 Линейная жидкость

Два сообщающихся сосуда, площади сечения которых S и 2S соединены снизу тонкой трубкой с закрытым краном. В узкий сосуд до высоты 3h налита жидкость плотностью ρ , а широкий сосуд высотой 4h доверху заполнен жидкостью, плотность которой изменяется линейно с глубиной от $\rho/4$ до ρ (см. рисунок).

- 1. Определите гидростатические давления в точках A и B слева и справа от крана.
- 2. Постройте качественный график зависимости гидростатического давления *p* в широком сосуде от глубины *x*.
- 3. На сколько сместится уровень жидкости в узком сосуде если кран открыть?

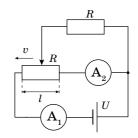
Слои жидкостей не перемешиваются. Ускорение свободного падения g.


8.3 Нелинейная мощность

Экспериментатор Глюк создал в своей лаборатории уникальный Z-тепловод, зависимость мощности теплового потока P через который от разности температур Δt на его концах приведена на рисунке. Для сравнения, на том же графике приведена зависимость мощности теплового потока через обычный N-тепловод.

Если два термостата с постоянными температурами $t_1=0~^{\circ}\mathrm{C}$ и $t_2=100~^{\circ}\mathrm{C}$ соединить N-тепловодом, то по нему пойдет тепловой поток мощностью $P_1=100~\mathrm{Br}$.

Определите мощность теплового потока:


- $1.\ P_{\scriptscriptstyle 2}$ через два N-тепловода, соединенные последовательно.
- 2. $P_{\scriptscriptstyle 3}$ между термостатами через Z-тепловод.
- 3. $P_{_{4}}$ через два Z-тепловода, соединенные последовательно.
- 4. P_5 через Z и N-тепловоды, соединенные последовательно. Какая в этом случае может быть температура в месте соединения тепловодов друг с другом?

8.4 Скорость тока

В электрической цепи, схема которой приведена на рисунке, ползунок потенциометра перемещают из крайнего правого положения влево с постоянной скоростью v=12 мм/с. Напряжение идеального источника U=12 В, сопротивление R=1.0 кОм.

- 1. Получите зависимости показаний $I_{_1}$ и $I_{_2}$ идеальных амперметров от времени и найдите их минимальные значения.
- 2. Определите длину l потенциометра, если известно, что скорость изменения величины отношения сил тока I_1 и I_2 равна $\xi=0.10~{\rm c}^{-1}.$