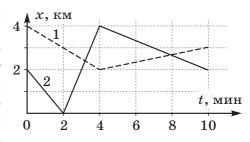

7 класс

Задача 1. Термоареометр. Однажды экспериментатору Глюку понадобилось одновременно измерять температуру и плотность исследуемой жидкости. Он разработал универсальный прибор, в котором указатель неподвижен, а шкалы перемещаются независимо (см. рис.).

Глюк снял показания, которые занёс в таблицу.


Температура, T , 0 С	20	18	16	12	8	7	6	4
Плотность, ρ , г/см ³	1,01	1,02	1,03	1,05	1,08	1,11	1,14	1,20

Известно, что температура жидкости изменялась на одинаковую величину за равные промежутки времени. Длины шкал L=10 см, а весь эксперимент длился $\Delta \tau = 5$ минут.

Постройте график полученной зависимости $\rho(T)$ и определите, с какой максимальной скоростью перемещались шкалы друг относительно друга в ходе эксперимента.

Задача 2. Каникулы в Простоквашино (1). От станции Простоквашино до дома, в котором живёт кот Матроскин, расстояние s=1,2 км. Дядя Фёдор с Шариком приехал на станцию Простоквашино и пошёл домой со скоростью $\upsilon_{\phi}=4$ км/ч, а Шарик побежал со скоростью $\upsilon_{III}=12$ км/ч. Добежав до дома Шарик повернул обратно, навстречу дяде Фёдору, и так бегал вперед и назад между дядей Фёдором и домом вплоть до момента прибытия мальчика домой. Какой путь больше: суммарный путь S_1 , который Шарик пробежал, перемещаясь в сторону дома, или S_2 , который он пробежал, перемещаясь в обратном направлении. На сколько один путь длиннее другого? Определите S_1 и S_2 .

Задача 3. Усреднение. На рисунке приведены графики зависимости от времени координат двух машин, ехавших по одной прямой дороге. Определите среднюю путевую скорость v_{10} второй машины за 10 минут движения с точки зрения наблюдателя, находящегося в первой. В какие моменты времени движения, кроме конечного, средняя скорость второй машины относительно первой также была равна v_{10} ? Какого

максимального значения достигала средняя путевая скорость второй машины в процессе движения.

Задача 4. Кубический коктейль. Если в стакан, доверху заполненный жидкостью с плотностью $\rho = 1,2$ г/см³, погрузить кубик, то средняя плотность содержимого станет равна $\rho_1 = 1,4$ г/см³, если вместо этого кубика поместить другой кубик такого же объема, то средняя плотность содержимого станет равна $\rho_2 = 1,6$ г/см³. Какой окажется средняя плотность ρ_3 содержимого, если в стакан поместить сразу оба кубика? Внутренний объем стакана в 5 раз больше объема кубика.

22 января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени):

7 класс – 11.00; 8 класс – 12.00; 9 класс – 13.00; 10 класс – 14.30; 11 класс – 16.00.

Чтобы при разборе задач вы могли задать вопросы, необходима регистрация на портале.