Общие положения

- 1) Максимальная оценка за каждую задачу 7 баллов.
- 2) 7 баллов ставится за безукоризненное решение задач; 6 баллов означает, что в решении допущена мелкая погрешность, например, не разобран частный случай, не влияющий на решение. 4 или 5 баллов означают, что все идеи, необходимые для решения найдены, задачу в целом надо считать решённой, однако приведённое решение имеет существенные недостатки, например, в доказательстве ключевого факта имеются пробелы, устранимые не совсем очевидным образом. 2-3 балла ставится, если в решении задачи имеется серъёзное продвижение, однако для решения необходимы дополнительные идеи, не указанные в решении. 1 балл означает, что в решении имеется только очень мелкое продвижение, как то: замечен, но не доказан ключевой факт, разобран нетривиальный частный случай или приведён (но не обоснован) верный ответ, который не вполне тривиален. Если приведённые в решении факты, идеи, выкладки к решению явным образом не ведут, то задача оценивается в 0 баллов, также как и в случае, когда решение задачи отсутствует.
- 3) В случае наличия в одной работе нескольких решений оценивается ровно одно решение, то, которое приносит больше баллов. За другие решения баллы не снимаются и не начисляются.
- 4) Оценка за задачу не может быть снижена за неаккуратный почерк, ошибки в русском языке, или явные описки в выкладках. Также недопустимо снижение баллов за не чёткий чертёж в геометрической задаче или даже за отсутствие такового. Нельзя требовать с участника олимпиады, чтобы он переписывал условие задачи, в том числе не обязательна краткая запись условия геометрических задач.
- 5) Школьник имеет право сам выбрать способ решения той или иной задачи; не допускается снижать оценку за то, что выбранный школьником способ решения не самый лучший или отличается от предложенных нами способов.
- 6) Факты и теоремы школьной программы (в том числе и те, которые приведены только в задачах школьных учебников) следует принимать без доказательств. Школьник имеет право без доказательства использовать любые такие факты, даже если они проходятся в более старших классах. Допускается (также без доказательств) использование математических фактов, изучающихся на факультативах. В частности, без ограничения можно применять формулы аналитической геометрии, математического анализа, принцип математической индукции, теоремы теории графов и т.п.
- 7) Критерии оценки, приведённые в прилагаемых решениях (таблица в конце решения каждой задачи) являются обязательными и не могут быть изменены. Однако это не означает, что выставляемые за задачу баллы обязательно должны совпасть с приведёнными в таблице: в случае, когда жюри вырабатывает дополнительные критерии (см. следующий пункт) жюри может выставить балл, которого в таблице нет (например, в таблице предусмотрены только 0 и 7 баллов, а

жюри выставляет 5 баллов). Таблицы критериев составлены таким образом, что перечисляют отдельные случаи; накопление баллов за разные пункты не предусмотрено.

- 8) В случае, если решение школьника принципиально отличается от решений, предложенных программным комитетом, и не может быть подведено под предлагаемые критерии, проверяющие вырабатывают критерии самостоятельно в соответствии с пунктом 2.
- 9) В случае возникновения спорных ситуаций при проверке работ олимпиады жюри вправе обратиться за разъяснениями и советом к составителям пакета заданий, т.е. к д.ф-м.н. Валерию Трифоновичу Шевалдину (адрес эл. почты valerii.shevaldin@imm.uran.ru) и к.ф-м.н. наук Сергею Эрнестовичу Нохрину (адрес эл.почты varyag2@mail.ru, тел. +79220350324). Мы ответим на все Ваши вопросы.

Муниципальный этап Всероссийской олимпиады школьников по математике в 2015-2016 учебном году 8 класс

Время выполнения заданий — 4 часа

8.1. Пусть все числа x, y, z не равны нулю. Найти все значения, которые может принимать выражение

$$\left(\frac{x}{|y|} - \frac{|x|}{y}\right) \cdot \left(\frac{y}{|z|} - \frac{|y|}{z}\right) \cdot \left(\frac{z}{|x|} - \frac{|z|}{x}\right) .$$

Решение: По принципу Дирихле среди чисел x, y и z найдутся два числа одного знака. Тогда соответствующая им скобка равна 0, и всё произведение тоже равно 0.

Ответ: Только число 0. *Рекомендации по проверке:*

есть в работе	баллы
верный и обоснованный ответ	7 баллов
верно разобраны некоторые (не все) случаи раскрытия	3 балла
модулей	
приведён пример, показывающий, что 0 может получиться	1 балл
верный ответ без обоснования (с неверным обоснованием)	0 баллов

8.2. Петя и три его одноклассника стартовали одновременно в забеге на 100 метров, и Петя пришёл первым. Через 12 секунд после начала забега никто еще не финишировал, и все четыре его участника в сумме пробежсали 288 метров. А когда Петя закончил бег, остальным трём его участникам осталось пробежать до финиша в сумме 40 метров. Сколько метров пробежал Петя за первые 12 секунд? Ответ обоснуйте. Предполагается, что каждый из участников забега бежал со своей постоянной скоростью.

Решение: Бегуны должны были в сумме пробежать 400 метров, при этом за 12 секунд они пробежали 288 метров, т. е. за 1 секунду бегуны пробегают 288 : 12 = 24 метра. Когда Петя финишировал, бегуны пробежали 400 - 40 = 360 метров, поэтому с момента старта прошло 360: 24 = 15 секунд. Значит, Петя бегает со скоростью 100/15 метра в секунду, и за 12 секунд пробегает $\frac{100}{15} \cdot 12 = 80$ метров.

Ответ: 80 метров.

Рекомендации по проверке:

есть в работе	баллы
верный и полностью обоснованный ответ	7 баллов
получен неверный ответ исключительно в силу	6 баллов
арифметических ошибок	
верно составлено, но не решено уравнение (система	4 балла
уравнений), решение которого (которой) приводит к ответу	
рассмотрены только частные случаи, (например, когда	2 балла
скорости трёх других бегунов одинаковы) И/ИЛИ найдена	
только сумма скоростей всех 4-х бегунов (24 м/с)	
приведён только верный ответ без обоснования (с неверным	1 балл
обоснованием)	

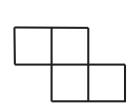
8.3. Неизвестные x, y и z связаны соотношением $\frac{1}{xy} = \frac{y}{z-x+1} = \frac{2}{z+1}$. Докажите, что в этом случае одно неизвестное является средним арифметическим двух других.

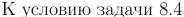
Решение: Из равенства $\frac{1}{xy} = \frac{2}{z+1}$ следует, что z+1=2xy. Но тогда из равенства $\frac{1}{xy} = \frac{y}{z-x+1}$ получаем, что $2xy-x=xy^2$. Неизвестное x не равно 0 (иначе первая дробь не существует), значит, полученное равенство на x можно сократить. Получится (после очевидных преобразований) уравнение $(y-1)^2=0$, откуда y=1. Тогда равенство z+1=2xy приводится к виду z+1=2x или $x=\frac{z+1}{2}=\frac{z+y}{2}$. Это значит, что неизвестное x есть среднее арифметическое неизвестных z и y.

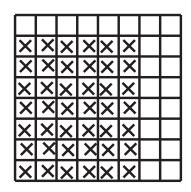
Рекомендации по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Доказано, что $y = 1$ (без дальнейшего продвижения)	5 баллов
Задача верно сведена к анализу одного уравнения от двух	3 балла
переменных, но этого анализа нет (неверен)	
Доказательства нет, а условие проиллюстрировано на	1 балл
нескольких конкретных примерах переменных	
Любые выкладки, не ведущие к решению, а также поиск	не оцениваются
ОДЗ выражения из условия	

8.4. Сколькими способами можно расположить на шахматной доске (размер 8×8 клеток) четырёхклеточный многоугольник в виде буквы Z (см. рисунок) так, чтобы он располагался точно по клеткам доски и в пределах доски? Четырёхугольник можно поворачивать и переворачивать. Ответ обоснуйте.







К решению задачи 8.4

Решение: Дополним четырёхугольник двумя клетками до прямоугольника 2×3 и сначала найдём количество способов расположить на шахматной доске такой прямоугольник. Пусть его большая сторона горизонтальна. Тогда левая нижняя клетка прямоугольника может быть любой из клеток, отмеченных на рисунке крестиком — имеем $6 \cdot 7 = 42$ положения. Столько же возможностей расположить прямоугольник так, чтобы его большая сторона была вертикальна. Итого, прямоугольник 2×3 может быть расположен на доске $2 \cdot 42 = 84$ способами. Остаётся заметить, что для каждому расположению прямоугольника на доске соответствует ровно два положения искомого четырёхугольника (из прямоугольника надо убрать пару противоположных угловых клеток, а это делается двумя способами). Значит, четырёхугольник можно разместить $84 \cdot 2 = 168$ способами.

Ответ: 168 способами. *Рекомендации по проверке:*

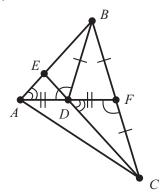
есть в работе	баллы
обоснованно получен верный ответ	7 баллов
не учтено, одно из двух: 1) четырёхугольник можно	5 баллов
поворачивать 2) его можно переворачивать; соответственно	
получен неверный ответ 84. Других ошибок нет.	
не учтены оба условия: 1) четырёхугольник можно	4 балла
поворачивать 2) его можно переворачивать; соответственно	
получен неверный ответ 42. Других ошибок нет.	
Имеется идея достроить четырёхугольник до	3 балла
прямоугольника, но количество расположений	
прямоугольника считается неверно	
верный ответ без обоснования	1 балл
непринципиальные ошибки в подсчёте расположений	−1 балл за
(например, неверно подсчитано число крестиков в	каждую
приведённом выше решении)	ошибку
идеи, не ведущие к решению (например, раскраска доски)	не оцениваются

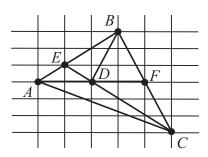
8.5. Пусть точка D- середина медианы AF треугольника ABC, E- точка пересечения прямой CD со стороной AB. Докажите, что если BD=BF=CF, то AE=DE.

Решение:

<u>Способ 1.</u> 1) $\angle BDF = \angle BFD$, как углы при основании равнобедренного треугольника BFD. Поэтому $\angle ADB = 180^{\circ} - \angle BDF = 180^{\circ} - \angle DFB = \angle DFC$.

- 2) Треугольники ADB и DFC равны по двум сторонам и углу между ними (AD=DF и DB=FC по условию, а $\angle ADB=\angle DFC$ по первому пункту), поэтому $\angle CDF=\angle DAB$ см. рисунок.
- 3) $\angle CDF = \angle ADE$, как вертикальные; $\angle CDF = \angle DAB$ по второму пункту, следовательно, $\angle ADE = \angle DAB = \angle DAE$.
- 4) Углы при основании AD треугольника ADE равны по третьему пункту, следовательно, треугольник равнобедренный и AE=DE, что и требовалось доказать.





К решению задачи 8.5, способ 1

К решению задачи 8.5, способ 2

Способ 2. Расположим треугольник так, чтобы его медиана AF была горизонтальной, и проведём вертикальные прямые так, что расстояние между соседними равно четверти медианы, и одна такая линия проходила бы через вершину A. Тогда вершина B, будучи равноудалённой от точек D и F, будет расположена на проведённой прямой. Проведём горизонтальные линии с шагом равным трети расстояния от точки B до прямой AF. Получим некоторую прямоугольную сетку на плоскости (см. рисунок). Теперь видно, что точка C попадает в узел сетки, а прямые AB и CD идут по диагоналям прямоугольников — ячеек сетки — и пересекаются как раз в её узле. Тогда EA = ED, как диагонали равных прямоугольников.

Рекомендации по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Найдено отношение, в котором точка E делит сторону AB ,	5 баллов
но доказательство не завершено	
Доказано равенство треугольников ADB и DFC ;	4 балла
дальнейшего продвижения нет	
Указано (или отмечено на чертеже), что $\angle ADB = \angle DFC$;	2 балла
дальнейшего продвижения нет	
Любые замечания о свойствах конструкции, если они не	не оцениваются
способствуют решению	

8.6. Все натуральные числа от 1 до 20 разбили на пары и числа в каждой паре сложили. Какое наибольшее количество из получившихся десяти сумм может делиться на 11? Ответ обоснуйте.

Решение: Число 11 — единственное число набора, которое делится на 11, поэтому при прибавлении к нему с любого другого числа делимость на 11 будет нарушена. Таким образом, все 10 сумм на 11 делиться не могут. Один из примеров, когда девять сумм делятся на 11, таков:

$$(1, 10), (2, 20), (3, 19), (4, 18), (5, 17), (6, 16), (7, 15), (8, 14), (9, 13), (11, 12).$$

Ответ: 9 сумм.

Рекомендации по проверке:

есть в работе	баллы
Наличие верного примера и доказательства его	7 баллов
оптимальности	
Имеется доказательство, что 10 сумм получить нельзя (при	3 балла
отсутствии примера на 9 сумм)	
Приведён пример, показывающий, что можно получить 9	1 балл
сумм (при отсутствии доказательства его оптимальности)	
Верный ответ без обоснования (с неверным обоснованием)	0 баллов
Примеры меньшего числа сумм (в любом количестве)	не оцениваются