Общие положения

- 1) Максимальная оценка за каждую задачу 7 баллов.
- 2) 7 баллов ставится за безукоризненное решение задач; 6 баллов означает, что в решении допущена мелкая погрешность, например, не разобран частный случай, не влияющий на решение. 4 или 5 баллов означают, что все идеи, необходимые для решения найдены, задачу в целом надо считать решённой, однако приведённое решение имеет существенные недостатки, например, в доказательстве ключевого факта имеются пробелы, устранимые не совсем очевидным образом. 2-3 балла ставится, если в решении задачи имеется серъёзное продвижение, однако для решения необходимы дополнительные идеи, не указанные в решении. 1 балл означает, что в решении имеется только очень мелкое продвижение, как то: замечен, но не доказан ключевой факт, разобран нетривиальный частный случай или приведён (но не обоснован) верный ответ, который не вполне тривиален. Если приведённые в решении факты, идеи, выкладки к решению явным образом не ведут, то задача оценивается в 0 баллов, также как и в случае, когда решение задачи отсутствует.
- 3) В случае наличия в одной работе нескольких решений оценивается ровно одно решение, то, которое приносит больше баллов. За другие решения баллы не снимаются и не начисляются.
- 4) Оценка за задачу не может быть снижена за неаккуратный почерк, ошибки в русском языке, или явные описки в выкладках. Также недопустимо снижение баллов за не чёткий чертёж в геометрической задаче или даже за отсутствие такового. Нельзя требовать с участника олимпиады, чтобы он переписывал условие задачи, в том числе не обязательна краткая запись условия геометрических задач.
- 5) Школьник имеет право сам выбрать способ решения той или иной задачи; не допускается снижать оценку за то, что выбранный школьником способ решения не самый лучший или отличается от предложенных нами способов.
- 6) Факты и теоремы школьной программы (в том числе и те, которые приведены только в задачах школьных учебников) следует принимать без доказательств. Школьник имеет право без доказательства использовать любые такие факты, даже если они проходятся в более старших классах. Допускается (также без доказательств) использование математических фактов, изучающихся на факультативах. В частности, без ограничения можно применять формулы аналитической геометрии, математического анализа, принцип математической индукции, теоремы теории графов и т.п.
- 7) Критерии оценки, приведённые в прилагаемых решениях (таблица в конце решения каждой задачи) являются обязательными и не могут быть изменены. Однако это не означает, что выставляемые за задачу баллы обязательно должны совпасть с приведёнными в таблице: в случае, когда жюри вырабатывает дополнительные критерии (см. следующий пункт) жюри может выставить балл, которого в таблице нет (например, в таблице предусмотрены только 0 и 7 баллов, а

жюри выставляет 5 баллов). Таблицы критериев составлены таким образом, что перечисляют отдельные случаи; накопление баллов за разные пункты не предусмотрено.

- 8) В случае, если решение школьника принципиально отличается от решений, предложенных программным комитетом, и не может быть подведено под предлагаемые критерии, проверяющие вырабатывают критерии самостоятельно в соответствии с пунктом 2.
- 9) В случае возникновения спорных ситуаций при проверке работ олимпиады жюри вправе обратиться за разъяснениями и советом к составителям пакета заданий, т.е. к д.ф-м.н. Валерию Трифоновичу Шевалдину (адрес эл. почты valerii.shevaldin@imm.uran.ru) и к.ф-м.н. наук Сергею Эрнестовичу Нохрину (адрес эл.почты varyag2@mail.ru, тел. +79220350324). Мы ответим на все Ваши вопросы.

Муниципальный этап Всероссийской олимпиады школьников по математике в 2015-2016 учебном году 9 класс

Время выполнения заданий — 4 часа

9.1. На доске написаны четыре ненулевых числа, причём сумма любых трёх из них меньше четвёртого числа. Какое наименьшее количество отрицательных чисел может быть написано на доске? Ответ обосновать.

Решение: Пусть на доске записаны числа $a \geqslant b \geqslant c \geqslant d$. Условие задачи равносильно неравенству a+b+c < d. Отсюда $a+b < d-c \leqslant 0$, поэтому среди чисел a и b есть отрицательные. Тогда числа c и d тоже отрицательны, значит, отрицательных не меньше трёх. Набор чисел $a=1,\,b=-2,\,c=d=-3$ показывает, что возможна ситуация, когда отрицательных чисел ровно 3.

Ответ: 3 числа.

Рекомендации по проверке:

есть в работе	баллы
Наличие верного примера и доказательства его	7 баллов
оптимальности	
Имеется доказательство, что отрицательных чисел не	3 балла
меньше трёх (при отсутствии примера с тремя числами)	
Приведён пример набора с тремя отрицательными числами	1 балл
(при отсутствии доказательства его оптимальности)	
Верный ответ без обоснования (с неверным обоснованием)	0 баллов
Примеры наборов с четырьмя отрицательными числами	не оцениваются

9.2. Приведённый квадратный трёхчлен $y = x^2 + ax + b$ имеет два корня. Докажите, что если прибавить к коэффициенту а любой из этих корней, а из коэффициента b вычесть квадрат этого же корня, то полученный трёхчлен также будет иметь по крайней мере один корень.

Решение:

Способ 1. Пусть корни исходного квадратного трёхчлена p и s. По теореме Виета $a=-p-s,\ b=ps$. Пусть мы добавили к коэффициенту a число p, а из коэффициента b число p^2 вычли. Тогда получился трёхчлен

$$x^{2} + (a+p)x + b - p^{2} = x^{2} - sx + ps - p^{2}$$
.

Его дискриминант равен $D=s^2-4(ps-p^2)=(s-2p)^2\geqslant 0$. Значит, полученный многочлен имеет хотя бы один действительный корень.

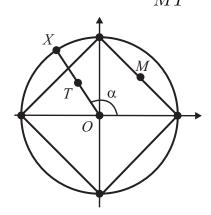
<u>Способ 2.</u> Пусть t — корень исходного трёхчлена. Тогда $t^2+at+b=0$. Преобразуем левую часть: $t^2+at+b=t^2+at+t^2-t^2+b=t^2+(a+t)t+(b-t^2)$. Полученное

равенство $t^2 + (a+t)t + (b-t^2) = 0$ показывает, что трёхчлен $x^2 + (a+t)x + b - t^2$ имеет своим корнем число t, что доказывает утверждение задачи.

Рекомендации по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Верно выписана теорема Виета для исходного трёхчлена (без	2 балла
дальнейшего продвижения)	
Верно найдены корни исходного трёхчлена и верно записан	1 балл
получающийся трёхчлен (с коэффициентами, выраженными	
через a и b)	
Исследованы только несколько конкретных трёхчленов	0 баллов
Выкладки любой длины, не ведущие к доказательству	не оцениваются

9.3. В окружность с центром О вписан квадрат. Пусть M — середина его стороны, X — произвольная точка на окружности, T — середина отрезка OX. Докажите, что $\frac{MX}{MT} = \sqrt{2}$.



К решению задачи 9.3

Решение:

Способ 1. Введём систему координат с осями, идущими вдоль диагоналей квадрата. Направления осей выберем так, чтобы точка M попала в первую координатную четверть (см. рисунок). Теперь O(0;0), если радиус окружности R, то точка M имеет координаты $M\left(\frac{R}{2};\frac{R}{2}\right)$, а точка X имеет координаты $X(R\cos\alpha;R\sin\alpha)$ для некоторого угла α . Наконец, точка T получит координаты, равные полусумме ко-

ординат точек O и X, т. е. $T\left(\frac{R\cos\alpha}{2};\frac{R\sin\alpha}{2}\right)$. Далее простой подсчёт:

$$MX^{2} = \left(\frac{R}{2} - R\cos\alpha\right)^{2} + \left(\frac{R}{2} - R\sin\alpha\right)^{2} = R^{2}\left(\frac{3}{2} - \cos\alpha - \sin\alpha\right);$$

$$MT^{2} = \left(\frac{R}{2} - \frac{R\cos\alpha}{2}\right)^{2} + \left(\frac{R}{2} - \frac{R\sin\alpha}{2}\right)^{2} = \frac{R^{2}}{4}(3 - 2\cos\alpha - 2\sin\alpha);$$

$$MX^{2} = 2MT^{2}; \qquad \frac{MX}{MT} = \sqrt{2},$$

что и требовалось доказать.

<u>Способ 2.</u> Очевиден случай, когда точка X лежит на диаметре, проходящем через точку M. Пусть X не лежит на этом диаметре, то есть существует невырожденный треугольник OMX. Достроим его до параллелограмма OMXY. По свойству

параллелограмма сумма квадратов его сторон равна сумме квадратов его диагоналей, то есть $2OM^2+2MX^2=OX^2+MY^2$. Заметим, что MY=2MT и что $OM=\frac{r}{\sqrt{2}}$, где r — радиус окружности. Тогда $2OM^2=r^2=OX^2$ и равенство превращается в условие $2MX^2=4MT^2$, равносильное доказываемому. $Pekomeh\partial auuu$ по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Ход доказательства верен, но доказательство не завершено	3 балла
из-за ошибок в формулах (тригонометрии, теоремы синусов	
и т. п.)	
Исследованы только частные случаи расположения точки X	1 балл
на окружности	

9.4. Прогульщик Вася каждый понедельник сентября пропускал по одному уроку, каждый вторник — по два урока, среду — по три, четверг — по четыре и пятницу — по пять уроков. Исключение составило 1 сентября: в этот день Вася в честь начала учебного года уроков не прогуливал. Оказалось, что за весь сентябрь Вася пропустил ровно 64 урока. На какой день недели пришлось 1 сентября? Ответ обосновать. (Все субботы и воскресенья сентября были выходными, а остальные дни учебными.)

Решение: Заметим, что за любые последовательные семь дней каждый день недели встречается ровно 1 раз, поэтому за любые последовательные 7 дней (начиная с 2 сентября) Вася прогуливал 1+2+3+4+5=15 уроков. Значит за период с 2 по 29 сентября он прогулял ровно $15 \cdot 4=60$ уроков, поэтому 30 сентября прогулял 64-60=4 урока. Это означает, что 30 сентября пришлось на четверг. Тогда на четверг пришлись также и такие числа сентября (вычитаем последовательно 7): 23, 16, 9, 2. А это значит, что 1 сентября пришлось на среду.

Ответ: На среду. Рекомендации по проверке:

есть в работе	баллы
Верный обоснованный ответ	7 баллов
Верное рассуждение с неверным ответом из-за неверно	6 баллов
взятого числа дней в сентябре (31 вместо 30)	
Замечено, что за ЛЮБЫЕ последовательные 7 дней Вася	4 балла
прогуливает 15 уроков	
Показано, что 1 сентября может прийтись на среду, но не	2 балла
показано, что оно не может быть другим днём	
Замечено, что 1 и 29 сентября приходятся на один день	1 балл
недели; дальнейших продвижений нет	
Верный ответ без обоснования (с неверным обоснованием)	0 баллов

- 9.5. В обменном пункте можно совершать только следующие операции:
 - 1) обменять 2 золотых монеты на три серебряных и одну медную;
 - 2) обменять 5 серебряных монет на три золотых и одну медную.

У Николая были только серебряные монеты. После нескольких посещений обменного пункта серебряных монет у него стало меньше, золотых не появилось, зато появилось 50 медных монет. На сколько уменьшилось количество серебряных монет у Николая? Ответ обоснуйте. Учтите, что обмен денег в банке не является равноценной операцией, то есть при каждом обмене покупательная способность имеющихся у Николая монет несколько уменьшалась.

Решение: В результате каждой операции Николай приобретает ровно 1 медную монету, значит, операций всего было ровно 50. Из них несколько (пусть a) было 1-го типа, остальные 50-a — второго. На операции первого типа Николай потратил 2a золотых монет, на операциях второго типа заработал 3(50-a) золотых монет. Так как золотых монет у него не осталось, то 2a = 3(50-a), откуда a = 30. Это значит, что на операциях первого типа Николай получил $30 \cdot 3 = 90$ серебряных монет, а на операциях второго типа потерял $(50-30) \cdot 5 = 100$ таких монет. Тогда их количество уменьшилось на 100-90=10 штук.

Ответ: На 10 монет. *Рекомендации по проверке:*

есть в работе	баллы
Верный обоснованный ответ	7 баллов
Верный ход решения, но ответ неверен из-за	6 баллов
арифметических ошибок	
Верно и обоснованно найдено количество операций одного	5 баллов
типа (или первого, или второго)	
Доказано, что отношение количеств операций 1-го и 2-го	3 балла
типов 3:2 И/ИЛИ обоснованно найдено общее количество	
операций обоих типов	
Задача верно решена в предположении равноценности всех	2 балла
обменов (общий случай не исследован)	
Приведён конкретный пример обменов, показывающий, что	1 балл
ответ 10 возможен, но его единственность не обоснована	
Верный ответ без обоснования (с неверным обоснованием)	0 баллов

9.6. Конечно или бесконечно множество троек (a, b, c) целых чисел, для которых верно равенство $a^2 + b^2 = 2(c^2 + 1)$? Ответ обосновать.

Решение:

Способ 1. $2(c^2+1)=(c-1)^2+(c+1)^2$, поэтому можно положить a любым целым числом, в качестве b взять a+2, а в качестве c — число a+1. Таким образом, множество таких троек бесконечно.

Способ 2. Докажем, что множество натуральных чисел, представимых в виде суммы квадратов двух целых чисел, замкнуто относительно операции умножения. В самом деле, пусть $a=m^2+n^2$ и $b=p^2+t^2$ для некоторых целых чисел $m,\,n,\,p$ и t. Тогда

$$ab = (m^{2} + n^{2})(p^{2} + t^{2}) = (mp)^{2} + (mt)^{2} + (np)^{2} + (nt)^{2} =$$

$$= (mp)^{2} + 2mnpt + (nt)^{2} + (mt)^{2} - 2mnpt + (np)^{2} = (mp + nt)^{2} + (mt - np)^{2}.$$

Числа mp + nt и mt - np — целые, поэтому утверждение доказано.

Так как $2 = 1^1 + 1^2$ и $c^2 + 1 = c^2 + 1^2$, число $2(c^2 + 1)$ представимо в виде суммы квадратов двух целых чисел для любого целого числа c. Значит, множество троек целых чисел, для которых верно равенство $a^2 + b^2 = 2(c^2 + 1)$, бесконечно.

Ответ: Бесконечно. *Рекомендации по проверке:*

есть в работе	баллы
Верное доказательство бесконечности количества троек	7 баллов
Замечена, но не обоснована (обоснована неверно)	4 балла
конструкция, позволяющая получить бесконечную серию	
троек чисел	
Сформулированы, но не доказаны верные утверждения, из	2 балла
которых легко следует утверждение задачи	
Приведены отдельные примеры подходящих троек в	0 баллов
конечном количестве И/ИЛИ верный ответ без обоснования	
И/ИЛИ неверный ответ	