ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ МУНИЦИПАЛЬНЫЙ ЭТАП 2018-2019 УЧЕБНЫЙ ГОД

ОТВЕТЫ И РЕШЕНИЯ

9 КЛАСС

Общее количество баллов **35. Решение каждой задачи оценивается Жюри из 7 баллов** в соответствии с критериями и методикой оценки, разработанной центральной предметно-методической комиссией:

Баллы	Правильность (ошибочность) решения.
7	Полное верное решение.
6-7	Верное решение, но имеются небольшие недочеты, в целом не
	влияющие на решение.
5-6	Решение в целом верное. Однако решение содержит ошибки, либо
	пропущены случаи, не влияющие на логику рассуждений.
3-4	Верно рассмотрен один из существенных случаев.
2	Доказаны вспомогательные утверждения, помогающие в решении
	задачи.
0-1	Рассмотрены отдельные случаи при отсутствии правильного решения.
0	Решение неверное, продвижения отсутствуют.
0	Решение отсутствует.

Указания к оцениванию отдельных задач содержатся в комментариях к решениям.

1. Каждый из 5 братьев владеет своим участком земли. Однажды они скинулись, купили огород соседа и поделили новую землю поровну между собой. В результате участок Андрея увеличился на 10%, участок Бориса — на $\frac{1}{15}$, участок Владимира — на 5%, участок Григория — на 4%, а участок Дмитрия — на $\frac{1}{30}$. На сколько процентов в результате увеличилась общая площадь их земли?

Ответ. На 5%.

Решение. Пусть A, Б, B, Γ , Π – площади участков каждого брата, соответственно. Тогда по условию $\frac{1}{10}$ A = $\frac{1}{15}$ Б = $\frac{1}{20}$ B = $\frac{1}{25}$ Γ = $\frac{1}{30}$ Π (*). Обозначив A = x, найдем: Б = 1,5x, B = 2x, Γ = 2,5x, Π = 3x. Значит общая площадь их участков была 10x, а увеличилась на $\frac{1}{10}$ A = 0,1x у каждого, то есть на 0,5x суммарно. Итого увеличение составило $\frac{0,5x}{10x} \cdot 100\% = 5\%$.

Комментарий. Получено соотношение (*) — 2 балла. Правильный ответ получен при рассмотрении частного случая — 2 балла. Если при верном ходе решения допущены арифметические ошибки, то снимать 1-2 балла.

2. Участники олимпиады оставили в кабинете 9 ручек. Среди любых четырёх ручек хотя бы две принадлежат одному хозяину. А среди любых пяти ручек не больше трёх имеют одного хозяина. Сколько учеников забыло ручки, и сколько ручек принадлежит каждому ученику?

Ответ. Учеников трое, каждому принадлежит по три ручки.

Решение. Ни одному из учеников не принадлежало более трёх ручек, так как в противном случае условие «среди любых пяти ручек не больше трёх имели одного хозяина» было бы не выполнено. Всего ручек 9, поэтому учеников не менее 3. С другой стороны, среди любых четырёх ручек есть две ручки одного ученика, поэтому учеников меньше 4. Таким образом, трое учеников, причем каждый забыл не более трёх ручек, а всего ручек 9. Значит, каждый ученик забыл 3 ручки.

Комментарий. Приведено полное обоснованное решение -7 баллов. Доказано только, что ни одному из учеников не принадлежало более трех ручек -1 балл. Доказано только, что учеников не менее 3-2 балла. Доказано только, что учеников меньше 4-2 балла. Доказано, что учеников трое -5 баллов. Приведен ответ без обоснований или с неверными обоснованиями -0 баллов.

3. В треугольнике ABC провели высоты BB_1 , CC_1 и медиану AA_1 . Докажите, что треугольник $A_1B_1C_1$ – равносторонний, если $\angle C + \angle B = 120^\circ$.

Решение. В прямоугольном треугольнике медиана равна половине гипотенузы. Тогда из ΔCBC_1 , и ΔCBB_1 получим $C_1A_1=BA_1=A_1C$ и $B_1A_1=BA_1=A_1C$, значит, $C_1A_1=B_1A_1$. Заметим, что $\angle C_1A_1B_1=180-\angle C_1A_1B-\angle B_1A_1C=180-(180-2\angle B)-(180-2\angle C)=2(\angle B+\angle C)-180=2\cdot 120-180=60$. Равнобедренный треугольник с углом 60° – равносторонний.

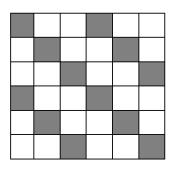
Комментарий. Доказано, что треугольник равнобедренный -3 балла. Попытка посчитать углы не приводящая к результату, либо с ошибками -1-2 балла.

4. Какое наименьшее количество клеток на доске 6×6 надо закрасить, чтобы при любом расположении (можно поворачивать и переворачивать) фигуры из 4 клеток в виде буквы Γ на доске, нашлась хотя бы одна закрашенная клетка?

Ответ. 12.

Решение. Рассмотрим прямоугольник 2×3 . В нём, очевидно, необходимо закрасить минимум 2 клетки. Разобьем доску 6×6 на 6 прямоугольников 2×3 в каждом нужно закрасить минимум 2 клетки, тогда всего нужно закрасить хотя бы 12 клеток. Пример с 12 клетками приведен справа.

Комментарий. Верный пример с 12 закрашенными клетками — 3 балла. Оценка, что меньше 12 не хватит — 4 балла. Оценка не должна опираться на пример. Рассуждения типа: «в моем примере нельзя уменьшить число закрашенных клеток» не является оценкой.



5. Найдите все натуральные числа N < 10000 такие, что $N = 26 \cdot S(N)$, через S(N) обозначается сумма цифр числа N.

Ответ. 234, 468.

Решение. Заметим, что число N не более чем трехзначное, иначе $N \ge 1000 > 936 = 26 \cdot 4 \cdot 9 \ge 26 \cdot S(N)$. Осталось рассмотреть числа, меньшие 1000. Как известно, число и его сумма цифр дают одинаковые остатки при делении на 9. Рассмотрим равенство $N = 26 \cdot S(N)$ с точки зрения делимости на 9. Удобнее переписать его в виде: $N - S(N) = 25 \cdot S(N)$. Тогда левая часть делится на 9, соответственно и правая часть делится на 9. Числа 25 и 9 взаимно просты, поэтому S(N) делится на 9, а значит, и N делится на 9. По условию N делится на 26. Итак, N делится на $9 \cdot 26 = 234$. Осталось проверить числа, кратные 234 и меньшие 1000.

Комментарий. Доказано, что число не более чем трёхзначное — 2 балла. Доказано, что число делится на 9 — 2 балла. За каждый найденный ответ по 1 баллу. Баллы суммируются. Если не доказана делимость на 9, а просто перебираются числа, кратные 26 и меньшие 1000, то 2 балла ставится только, когда перебор полный и записан.