7 класс

1. Докажите, что ребус ABCD+ BCD+ CD+ D=2019 не имеет решений.

Решение. Так как последняя цифра во всех слагаемых одна и та же, то они - одной чётности, а сумма четырёх чисел одной чётности чётна и равняться нечётному числу 2019 не может.

2. На четырёх карточках написали четыре числа, сумма которых равна 360. Можно выбрать три карточки, на которых написаны одинаковые числа. Есть две карточки, на одной из которых написано число в три раза больше другого. Какие числа могут быть написаны на карточках?

Ответ: 36, 108, 108, 108 или 60, 60, 60, 180.

Решение. Пусть меньшее из четырёх чисел равно х. Тогда большее равно 3х. Равными могут быть три больших или три меньших, откуда получаем два уравнения: 3x+3x+3x+x=360 и x+x+x+3x=360. Из первого находим x=36, и на карточках написаны числа 36, 108, 108, 108. Из второго находим x=60, и на карточках написаны числа 60, 60, 60, 60, 180.

Критерии.

Получен только один из двух вариантов: 3 балла.

3. Четыре мальчика, четыре девочки и тренер расположились на дорожке, имеющей форму окружности. Каждая девочка стоит диаметрально противоположно к одному из мальчиков. Длина дорожки равна 50м. По команде тренера все они по кратчайшему пути по дорожке бегут к нему. Какое расстояние пробегут все дети вместе?

Ответ: 100м.

Решение. Рассмотрим пару - мальчика с девочкой, стоящих диаметрально противоположно друг другу, - и тренера. Понятно, что эти мальчик и девочка вместе пробегут полкруга, то есть 25 метров. Поскольку пар четыре, то все дети вместе пробегут 4.25=100м.

Критерии. Ответ на основе частных случаев: 1 балл.

4. Некоторые квадраты таблицы заминированы. Каждое записанное в квадрате число показывает количество мин в квадратах, соседних с данным квадратом. (См. рисунок. Соседними являются квадраты, имеющие по

2	1	2

крайней мере одну общую точку; квадрат с числом не заминирован). Сколькими способами можно расставить мины в таблице? Ответ обоснуйте.

Ответ: 14.

Решение. Мина, соседняя с числом 1, находится во втором, третьем или четвёртом столбце.

1 случай. Если мина находится во втором столбце, то у неё три варианта расположения, и она - соседняя с цифрой два из первого столбца, а значит, вторая мина, соседняя с этой двойкой, находится в первом столбце, и у неё два варианта расположения. В этом случае получается $2 \cdot 3 = 6$ вариантов расположения мин.

2 случай. Если мина находится в четвёртом столбце, то, ввиду симметрии, получим тоже 6 вариантов.

3 случай. Если мина находится в третьем столбце, то у неё две возможности в этом столбце. Мины соседние с двойкой обязательно находятся в том же столбце, что и двойка. В этом случае подучаем два варианта.

Суммируя результаты, получаем всего 6+6+2=14.

Критерии. Приведены все случаи расположения мин, но не показано, что других нет: 4 балла.

5. Из десяти семиклассников каждый знаком ровно с двумя другими. Доказать, что среди них можно выбрать четверых, любые двое из которых не знакомы. Считаем, что если A знаком с B, то и B знаком с A.

Решение. Возьмём любого из семиклассников и присвоим ему номер 1. Исключим его знакомых и из оставшихся семи выберем любого и присвоим ему номер 2. Исключим из оставшихся знакомых второго. У нас останется не менее четырёх. Возьмём любого из них и присвоим ему номер 3. Исключим из рассмотрения его знакомых, и у нас останется хотя бы один семиклассник, которому присвоим номер 4. Семиклассники 1, 2, 3, 4 образуют искомую четвёрку.

Способ 2. Поставим всех детей в хороводы. Каждый стоит рядом с двумя своими знакомыми. В хороводе не менее трёх детей и, значит, хороводов не более трёх. Если хоровод один, то взяв детей через одного получим даже пятерых попарно незнакомых. Если хороводов два, и в каждом не менее четырёх детей, то из каждого берём по два, стоящих через одного; иначе из меньшего берём одного, а из второго трёх стоящих через одного. Если хороводов три, из большего берём двух через одного, а из двух других - по одному.

Критерии. Рассмотрен один частный случай: 0 баллов.

Сделана попытка перебора, как во втором способе, но пропущены 1 -2 случая: 3 балла.

6. По кругу лежат шесть монет двух типов, отличающиеся только массой — фальшивые и настоящие. Среди трех подряд лежащих - не более одной фальшивой. За два взвешивания на двухчашечных весах найти фальшивые монеты, если настоящие монеты весят одинаково и легче фальшивых, которые тоже весят одинаково.

Решение. Фальшивых монет может быть две или одна. Занумеруем монеты числами от 1 до 6 в порядке их расположения. Первым взвешиванием на левую чашку кладём 1, 2,3, на правую 4,5,6. Если наступит равновесие, то фальшивых монет две. Если нет, то фальшивая монета одна и лежит на более тяжёлой чашке. Сравним две монеты с этой чашки. Если

равновесие, то фальшивая третья, иначе фальшивая на перетянувшей чашке. В случае равновесия в первом взвешивании найдём за второе взвешивание фальшивую среди 1, 2, 3, а вторая фальшивая лежит напротив

Критерии. Верный способ нахождения фальшивых монет, но не обоснована его правильность: 5 баллов.