

САНКТ-ПЕТЕРБУРГСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ

РАЙОННЫЙ ЭТАП ВСЕРОССИЙСКОЙ ОЛИМПИАЛЫ ШКОЛЬНИКОВ

16 ноября 2019 г. І тур 10 класс 1 вариант

- **1.** Ненулевые вещественные числа a, b и острый угол β таковы, что число $\cos \beta$ является корнем уравнения $4ax^2 + bx - a = 0$, а число $\sin \beta$ — корнем уравнения $4ax^2 - bx - 3a = 0$. Чему может быть равно β ? Не забудьте проверить, что найденные значения β подходят, и доказать, что других значений нет.
- 2. В выпуклом четырехугольнике АВСД диагонали пересекаются в точке O. Известно, что $AO \cdot BO < CO \cdot DO$. Докажите, что $\angle BCD + \angle CDA < 180^{\circ}$.
- **3.** Существуют ли такие правильные дроби $a,\ b$ и c, что число $4ab^2c^3/3$ натуральное? (Напомним, что правильной дробью называется число вида m/n, где m < n — натуральные числа.)
- **4.** Антон положил на клетчатую доску 46×101 несколько бумажных крестиков, изображенных на рисунке (каждый крестик покрывает ровно 5 клеток доски). Оказалось, что для каждой клетки доски сумма попавших на неё чисел не превосходит 2. Какое наибольшее количество крестиков мог положить Антон?
- 5. В межгалактическом турнире по шахматам приняло участие n шахматистов, представляющих несколько планет. Каждые два участника сыграли между собой по одной партии. Оказалось, что число партий, в которых соперники представляли одну планету, равно числу партий, в которой соперники представляли разные планеты. Сколько существует значений $n \in [150\,000, 200\,000]$, для которых это возможно?

Этот листок Вы можете оставить себе на память. В начале своей работы укажите следующие данные:

Фамилия, имя; телефон; класс, школа, район школы; ФИО тех учителей математики, которые оказали на Вас наибольшее влияние. Списки прошедших на городской и региональный тур будут опубликованы на сайтах www.pdmi.ras.ru/~ olymp и http://anichkov.ru/page/olimp/

САНКТ-ПЕТЕРБУРГСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ

РАЙОННЫЙ ЭТАП

ВСЕРОССИЙСКОЙ ОЛИМПИАЛЫ ШКОЛЬНИКОВ 16 ноября 2019 г. І тур 10 класс 2 вариант

- **1.** Ненулевые вещественные числа p, q и острый угол α таковы, что число $\sin \alpha$ является корнем уравнения $6px^2 - qx - 2p = 0$, а число $\cos \alpha$ — корнем уравнения $6px^2 + qx - 4p = 0$. Чему может быть равно α ? Не забудьте проверить, что найденные значения α подходят, и доказать, что других значений нет.
- 2. В выпуклом четырехугольнике АВСД диагонали пересекаются в точке E. Известно, что $\angle CDA + \angle DAB > 180^{\circ}$. Докажите, что $BE \cdot CE > AE \cdot DE$.
- **3.** Существуют ли такие правильные дроби p, q и r, что число $3pq^2r^3/2$ натуральное? (Напомним, что правильной дробью называется число вида m/n, где m < n — натуральные числа.)
- **4.** Дима положил на клетчатую доску 90×35 несколько бумажных крестиков, изображенных на рисунке (каждый крестик покрывает ровно 5 клеток доски). Оказалось, что для каждой клетки доски сумма попавших на неё чисел не превосходит 2. Какое наибольшее количество крестиков мог положить Дима?
- 5. На всемирный математический конгресс прибыло k математиков, представляющих несколько стран. Каждые двое математиков обменялись одним рукопожатием. Оказалось, что число рукопожатий, в которых оба математика были из одной страны, равно числу рукопожатий между математиками из разных стран. Сколько существует значений $k \in [100\,000, 200\,000]$, для которых это возможно?

Этот листок Вы можете оставить себе на память. В начале своей работы укажите следующие данные:

ФАМИЛИЯ, ИМЯ; ТЕЛЕФОН; КЛАСС, ШКОЛА, РАЙОН ШКОЛЫ; ФИО тех учителей математики, которые оказали на Вас наибольшее влияние. Списки прошедших на городской и региональный тур будут опубликованы на сайтах www.pdmi.ras.ru/~ olymp и http://anichkov.ru/page/olimp/