Муниципальный этап всероссийской олимпиады школьников 2020—2021 учебный год

Математика 11 класс

Требования к проверке работ:

1) Олимпиада не является контрольной работой и недопустимо снижение оценок по задачам за неаккуратно записанные решения, исправления в работе. В то же время обязательным является снижение оценок за математические, особенно логические ошибки;

2) Стандартная методика оценивания:

Баллы	Правильность (ошибочность) решения.						
7	Полное верное решение.						
6-7	Верное решение, но имеются небольшие недочеты, в целом не влияющие на						
	решение.						
5-6	Решение содержит незначительные ошибки, пробелы в обоснованиях, но						
3-0	в целом верно и может стать полностью правильным после небольших						
	исправлений или дополнений.						
4	Верно рассмотрен один из двух (более сложный) существенных случаев.						
2-3	Доказаны вспомогательные утверждения, помогающие в решении задачи.						
1	Рассмотрены отдельные важные случаи при отсутствии решения (или при						
	ошибочном решении).						
0	Решение неверное, продвижения отсутствуют.						
0	Решение отсутствует.						

В комментариях к отдельным задачам, в приведенных ответах и решениях к задачам олимпиады, указаны критерии оценивания (в баллах) некоторых предполагаемых ошибок и частичных продвижений. Работа участника, помимо приведённых, может включать другие содержательные продвижения и ошибки, которые должны быть оценены дополнительно.

Ответы и решения

11.1. Подряд выписаны числа 2^{2019} и 5^{2019} . Сколько всего выписано цифр?

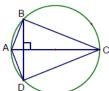
Ответ: 2020.

Решение. Пусть число 2^{2019} содержит m цифр, a число 5^{2019} содержит n цифр. Тогда справедливы неравенства: $10^{m-1} < 2^{2019} < 10^m$, $10^{n-1} < 5^{2019} < 10^n$ (неравенства строгие, поскольку степень двойки или пятерки не равна степени десятки). Перемножив эти неравенства, получаем: $10^{m+n-2} < 10^{2019} < 10^{m+n}$. Отсюда следует, что показатель 2019 заключен между m+n-2 и m+n, поэтому 2019 = m+n-1 и m+n = 2020. Это означает, что всего выписано 2020 цифр.

11.2. В четырехугольнике диагонали перпендикулярны. В него можно вписать окружность и около него можно описать окружность. Можно ли утверждать, что это квадрат?

Ответ. Нельзя.

Решение. Рассмотрим в окружности диаметр AC и перпендикулярную ему хорду BD, не проходящую через центр (см. рисунок).



Покажем, что четырехугольник ABCD удовлетворяет условию задачи. Для этого достаточно доказать, что в него можно вписать окружность. В окружности диаметр делит перпендикулярную ему хорду пополам, значит, в треугольнике BAD высота является медианой и этот треугольник

является равнобедренным: AB=AD. Аналогично, CB=CD. Так как суммы противоположных сторон четырехугольника ABCD равны, в него можно вписать окружность.

Комментарий.

7 баллов — полное решение.

3 балла— верный пример фигуры, но не доказано одно из свойств (вписанность, описанность или перпендикулярность диагоналей).

1 балл- верная «картинка».

11.3. Докажите, что если котангенсы углов треугольника образуют арифметическую прогрессию, то и квадраты сторон этого треугольника образуют арифметическую прогрессию.

Решение. Из теоремы косинусов: $a^2 - b^2 = ac \times \cos B - bc \times \cos A$.

Из теоремы о площади треугольника: $bc = 2S / \sin A$, $ac = 2S / \sin B$.

Из этих соотношений (и аналогичных им):

$$b^2 - a^2 = 2S \times (\operatorname{ctg} A - \operatorname{ctg} B),$$

$$c^2 - b^2 = 2S \times (\operatorname{ctg} B - \operatorname{ctg} C).$$

Так как котангенсы углов образуют арифметическую прогрессию, то $b^2 - a^2 = c^2 - b^2$.

Значит, квадраты сторон треугольника образуют арифметическую прогрессию

11.4. Уравнение (x + a)(x + b) = 9 имеет корень a + b. Докажите, что $ab \le 1$.

Решение. Подставив данный корень x = a + b в уравнение, получаем равенство (a + b + a)(a + b + b) = (2a + b)(2b + a) = 9.

Тогда $9 = 5ab + 2(a^2+b^2) > 5ab + 2 \cdot 2ab = 9ab$, откуда $ab \le 1$. (Мы использовали неравенство $a^2 + b^2 > 2ab$, которое эквивалентно $(a - b)^2 > 0$.)

Комментарий. В решении применяется неравенство о средних для чисел, знак которых неизвестен, _не более 3 баллов.

11.5. Каждая клетка таблицы размером 7х8 (7 строк и 8 столбцов) покрашена в один из трех цветов: красный, желтый или зеленый. При этом в каждой строке красных клеток не меньше, чем желтых и не меньше, чем зеленых, а в каждом столбце желтых клеток не меньше, чем красных и не меньше, чем зеленых. Сколько зеленых клеток может быть в такой таблице?

Ответ: 8

Решение. 1) В каждой строке таблицы красных клеток не меньше, чем желтых, следовательно, и во всей таблице красных клеток не меньше, чем желтых. В каждом столбце таблицы желтых клеток не меньше, чем красных, следовательно, и во всей таблице желтых клеток не меньше, чем красных. Таким образом, в таблице одинаковое количество красных и желтых клеток.

- 2) Предположим, что в каком-нибудь столбце желтых клеток больше, чем красных. Так как в каждом из остальных столбцов желтых клеток не меньше, чем красных, то тогда во всей таблице желтых клеток будет больше, чем красных, но это не так (см. 1). Значит, в каждом из восьми столбцов красных и желтых клеток поровну.
- 3) Так как в каждом столбце желтых клеток не меньше, чем зеленых, то исключаются случаи, когда в каждом столбце: а) 1 желтая, 1 красная, 5 зеленых клеток и б) 2 желтые, 2 красные, 3 зеленых клетки. Остается только случай, когда в каждом столбце 3 красных, 3 желтых и 1 зеленая клетка. Тогда всего в таблице 8 зеленых клеток. Этот случай возможен. Например, см. таблицу.

				•				
3	3	ж	К	ж	К	ж	К	
К	Ж	3	3	К	ж	К	Ж	
ж	К	К	ж	3	3	Ж	К	
К	ж	ж	к	ж	К	3	3	
ж	К	К	ж	к	ж	К	Ж	
К	ж	К	ж	к	ж	К	ж	
ж	К	ж	К	ж	К	ж	К	

Критерии проверки

7 баллов – приведено полное обоснованное решение.

6 баллов — приведено верное в целом решение, содержащее незначительные пробелы или неточности.

4 балла – доказано, что зеленых клеток может быть только 8, но пример не приведен.

2 *балла* — приведены только верный ответ и пример.

0 баллов — приведен только ответ.

0 баллов – задача не решена или решена неверно.

Интернет-ресурсы: http://www.problems.ru, https://olimpiada.ru.