Разбор заданий пригласительного этапа ВсОШ по математике

для 6 класса

2020/21 учебный год

Максимальное количество баллов — 8

Каждое точное совпадение ответа — 1 балл

Залание №1

1.1 Дворовый турнир по настольному теннису среди 15 игроков проводится по определенным правилам. В каждом туре жребием определяются два игрока, которые соревнуются друг с другом. После тура проигравший получает черную карточку. Тот, кто получает две черные карточки, выбывает из борьбы. Последний оставшийся игрок объявляется чемпионом. При этом в настольном теннисе не бывает ничьих. Сколько туров было в дворовом турнире, если чемпион проиграл ровно один раз?

Ответ: 29

Решение. В каждом матче всегда есть ровно один проигравший. Так как выбыли 14 игроков, то всего

было $14 \cdot 2 + 1 = 29$ проигрышей.

1.2 Дворовый турнир по настольному теннису среди 17 игроков проводится по определенным правилам. В каждом туре жребием определяются два игрока, которые соревнуются друг с другом. После тура проигравший получает черную карточку. Тот, кто получает две черные карточки, выбывает из борьбы. Последний оставшийся игрок объявляется чемпионом. При этом в настольном теннисе не бывает ничьих. Сколько туров было в дворовом турнире, если чемпион проиграл ровно один раз?

Ответ: 33

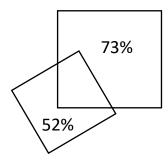
1.3 Дворовый турнир по настольному теннису среди 14 игроков проводится по определенным правилам. В каждом туре жребием определяются два игрока, которые соревнуются друг с другом. После тура проигравший получает черную карточку. Тот, кто получает две черные карточки, выбывает из борьбы. Последний оставшийся игрок объявляется чемпионом. При этом в настольном теннисе не бывает ничьих. Сколько туров было в дворовом турнире, если чемпион проиграл ровно один раз?

1.4 Дворовый турнир по настольному теннису среди 13 игроков проводится по определенным правилам. В каждом туре жребием определяются два игрока, которые соревнуются друг с другом. После тура проигравший получает черную карточку. Тот, кто получает две черные карточки, выбывает из борьбы. Последний оставшийся игрок объявляется чемпионом. При этом в настольном теннисе не бывает ничьих. Сколько туров было в дворовом турнире, если чемпион проиграл ровно один раз?

Ответ: 25

1.5 Дворовый турнир по настольному теннису среди 16 игроков проводится по определенным правилам. В каждом туре жребием определяются два игрока, которые соревнуются друг с другом. После тура проигравший получает черную карточку. Тот, кто получает две черные карточки, выбывает из борьбы. Последний оставшийся игрок объявляется чемпионом. При этом в настольном теннисе не бывает ничьих. Сколько туров было в дворовом турнире, если чемпион проиграл ровно один раз?

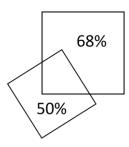
2.1 Два квадрата расположены так, как показано на рисунке. Если отсечь от маленького квадрата часть, пересекающуюся с большим, останется 52% его площади, у большого без их общей части останется 73% площади. Найдите, чему равно отношение стороны маленького квадрата к стороне большого.



Ответ: 0.75

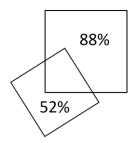
Решение. Заметим, что 27% площади большого квадрата равно 48% площади малого квадрата, то есть отношение площадей равно $\frac{27}{48} = \frac{9}{16}$. Но площадь каждого квадрата равна квадрату отношения сторон, поэтому стороны относятся как $3 \div 4 = 0.75$.

2.2 Два квадрата расположены так, как показано на рисунке. Если отсечь от маленького квадрата часть, пересекающуюся с большим, останется 50% его площади, у большого без их общей части останется 68% площади. Найдите, чему равно отношение стороны маленького квадрата к стороне большого.



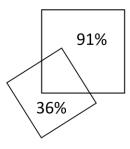
Ответ: 0.8

2.3 Два квадрата расположены так, как показано на рисунке. Если отсечь от маленького квадрата часть, пересекающуюся с большим, останется 52% его площади, у большого без их общей части останется 88% площади. Найдите, чему равно отношение стороны маленького квадрата к стороне большого.



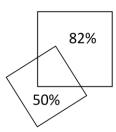
Ответ: 0.5

2.4 Два квадрата расположены так, как показано на рисунке. Если отсечь от маленького квадрата часть, пересекающуюся с большим, останется 36% его площади, у большого без их общей части останется 91% площади. Найдите, чему равно отношение стороны маленького квадрата к стороне большого.



Ответ: 0.375

2.5 Два квадрата расположены так, как показано на рисунке. Если отсечь от маленького квадрата часть, пересекающуюся с большим, останется 50% его площади, у большого без их общей части останется 82% площади. Найдите, чему равно отношение стороны маленького квадрата к стороне большого.



Ответ: 0.6

3.1 Два муравья бегут по окружности навстречу друг другу с постоянными скоростями. Пока один из них пробегает 9 кругов, второй пробегает 6. Там, где муравьи встречаются, появляется красная точка. Сколько красных точек на окружности?

Ответ: 5

Решение. Соотношение скоростей муравьев равно $\frac{9}{6} = \frac{3}{2}$. Без ограничения общности считаем длину окружности равной 5, и пусть муравьи встретятся в какой-то момент в точке 0. Поставим по часовой стрелке точки 1, 2, 3 и 4 так, чтобы они вместе с точкой 0 делили окружность на 5 равных частей. Если медленный муравей бежит против часовой стрелки, то в следующий раз они встретятся в точке 2. Теперь её можно считать стартовой, и значит, далее они встретятся в точке 4, а после этого — в точке 1 (так как 4+2=6, но длина окружности 5). Следующая встреча в точке 3, затем 0, после чего процесс зациклится, и точек будет всего 5.

3.2 Два муравья бегут по окружности навстречу друг другу с постоянными скоростями. Пока один из них пробегает 14 кругов, второй пробегает 4. Там, где муравьи встречаются, появляется красная точка. Сколько красных точек на окружности?

Ответ: 9

3.3 Два муравья бегут по окружности навстречу друг другу с постоянными скоростями. Пока один из них пробегает 10 кругов, второй пробегает 6. Там, где муравьи встречаются, появляется красная точка. Сколько красных точек на окружности?

3.4 Два муравья бегут по окружности навстречу друг другу с постоянными скоростями. Пока один из них пробегает 15 кругов, второй пробегает 33. Там, где муравьи встречаются, появляется красная точка. Сколько красных точек на окружности?

Ответ: 6

3.5 Два муравья бегут по окружности навстречу друг другу с постоянными скоростями. Пока один из них пробегает 8 кругов, второй пробегает 6. Там, где муравьи встречаются, появляется красная точка. Сколько красных точек на окружности?

4.1 Семь пиратов делили пять одинаковых сундуков с сокровищами. Они договорились, что пятеро

из них возьмут себе по сундуку, а остальные получат справедливую компенсацию, равную стоимости

сундука. Каждый из получателей сундука заплатил в общий фонд по 10000 пиастров, после этого

деньги распределили между оставшимися пиратами. В какую сумму был оценен один сундук?

Ответ: 35000

Решение. Два пирата получили 50000 пиастров, следовательно доля каждого составила 25000. Так

как сундуки были поделены справедливо, то общая сумма сокровищ составляла 25000 на семерых,

всего 175000. Тогда 175000 — это стоимость пяти сундуков, то есть каждый сундук был оценен в

35000 пиастров.

4.2 Шесть пиратов делили четыре одинаковых сундука с сокровищами. Они договорились, что чет-

веро из них возьмут себе по сундуку, а остальные получат справедливую компенсацию, равную сто-

имости сундука. Каждый из получателей сундука заплатил в общий фонд по 10000 пиастров, после

этого деньги распределили между оставшимися пиратами. В какую сумму был оценен один сундук?

Ответ: 30000

4.3 Семь пиратов делили четыре одинаковых сундука с сокровищами. Они договорились, что четверо

из них возьмут себе по сундуку, а остальные получат справедливую компенсацию, равную стоимости

сундука. Каждый из получателей сундука заплатил в общий фонд по 30000 пиастров, после этого

деньги распределили между оставшимися пиратами. В какую сумму был оценен один сундук?

Ответ: 70000

4.4 Девять пиратов делили пять одинаковых сундуков с сокровищами. Они договорились, что пятеро

из них возьмут себе по сундуку, а остальные получат справедливую компенсацию, равную стоимости

сундука. Каждый из получателей сундука заплатил в общий фонд по 12000 пиастров, после этого

деньги распределили между оставшимися пиратами. В какую сумму был оценен один сундук?

4.5 Восемь пиратов делили пять одинаковых сундуков с сокровищами. Они договорились, что пятеро из них возьмут себе по сундуку, а остальные получат справедливую компенсацию, равную стоимости сундука. Каждый из получателей сундука заплатил в общий фонд по 15000 пиастров, после этого деньги распределили между оставшимися пиратами. В какую сумму был оценен один сундук?

5.1 У Маши есть красные и белые шарики. Если количество белых шариков увеличить в п раз, то в

сумме у неё будет 101 шарик. А если увеличить в п раз количество только красных, то шариков будет

103. Сколько шариков у Маши сейчас? Найдите все варианты, если п — натуральное число.

Ответ: 51, 68

Решение. В первом случае прибавилось бы количество белых шариков, умноженное на (n-1), а во

втором случае — количество красных шариков, умноженное на (n-1). Оба этих числа делятся на

(n-1), но так как в первом случае получится 101, а во втором — 103, то они отличаются на 2. Следо-

вательно, число 2 делится на (n-1), откуда n=2 или n=3.

При n=2 количество шариков увеличивается вдвое, то есть изначально красных шариков на 2

больше, чем белых. Пусть белых шариков b, тогда красных — b+2. Получаем, что 101=2b+b+2,

откуда 3b = 99, b = 33, поэтому шариков у Маши сейчас 33 + 33 + 2 = 68.

При n=3 количество шариков увеличивается втрое, то есть изначально красных шариков на 1 больше,

чем белых. Пусть белых шариков b, тогда красных — b+1. Получаем, что 101=3b+b+1, откуда

4b = 100, b = 25, поэтому шариков у Маши сейчас 25 + 26 = 51.

5.2 У Маши есть красные и белые шарики. Если количество белых шариков увеличить в п раз, то в

сумме у неё будет 89 шариков. А если увеличить в п раз количество только красных, то шариков

будет 91. Сколько шариков у Маши сейчас? Найдите все варианты, если п — натуральное число.

Ответ: 45, 60

5.3 У Маши есть красные и белые шарики. Если количество белых шариков увеличить в п раз, то в

сумме у неё будет 125 шариков. А если увеличить в п раз количество только красных, то шариков

будет 127. Сколько шариков у Маши сейчас? Найдите все варианты, если п — натуральное число.

Ответ: 63, 84

5.4 У Маши есть красные и белые шарики. Если количество белых шариков увеличить в п раз, то в

сумме у нее будет 77 шариков. А если увеличить в п раз количество только красных, то шариков

будет 79. Сколько шариков у Маши сейчас? Найдите все варианты, если п — натуральное число.

Ответ: 39, 52

5.5 У Маши есть красные и белые шарики. Если количество белых шариков увеличить в п раз, то в сумме у нее будет 113 шариков. А если увеличить в п раз количество только красных, то шариков будет 115. Сколько шариков у Маши сейчас? Найдите все варианты, если п — натуральное число.

Ответ: 57, 76

6.1 Скажем, что число А скрывает в себе число В, если из А можно вычеркнуть несколько цифр так, чтобы получить В (например, число 123 скрывает в себе числа 1, 2, 3, 12, 13 и 23). Найдите наименьшее натуральное число, которое скрывает в себе числа 2021, 2120, 1220 и 1202.

Ответ: 1201201

Решение. Заметим, что в числе есть минимум две двойки и один ноль. Если двоек ровно две, то ноль должен стоять и между ними, и после них, но тогда нуля минимум два. Следовательно, только на двойки и нули нужно 4 цифры (либо две двойки и два нуля, либо три двойки и ноль).

Если в числе одна единица, то до нее должны идти 2, 0, 2, а после — еще две двойки и ноль. При этом ноль стоит и между двойками, и после них (1220 и 1202), поэтому нужна еще одна двойка или еще один ноль, итого уже 8 цифр.

Пусть единиц две. Если двойки ровно две, то нужна единица после этих двоек (2021), между ними (2120) и перед ними (1220), что вызывает противоречие. Значит, двоек минимум три. Если цифр всего 6, то ноль — единственный. Тогда он стоит после двух двоек и перед одной. Из числа 1220 получаем, что одна из единиц стоит перед двумя первыми двойками и нулем, а из числа 2021 получаем, что другая единица стоит после последней двойки. Тогда однозначно получаем, что расстановка такова — 122021, но увы, из нее нельзя получить число 2120. Значит, одним нулем не обойдемся, и цифр у нас уже семь.

Пусть единиц три. На двойки и нули нужно еще 4 цифры, значит, цифр 7.

Пусть цифр семь. Первым стоит не ноль, а значит, 1. Если далее стоит 0, то он бесполезен (в наших числах 0 встречается только после двоек). Две единицы подряд или два нуля ставить смысла нет, так как в каждом из наших чисел 0 или 1 встречаются только один раз. Значит, во втором по старшинству разряде стоит 2, далее можно поставить 0, а далее — 1. 1201...У нас есть еще три цифры, одна из которых точно двойка. Из числа 1220 понимаем, что где-то за ней стоит ноль, а из числа 2021 — за ней стоит еще и единица. Наименьший такой вариант — 201, и он подходит.

7.1 В примере на сложение и вычитание ученик заменил цифры буквами по правилу: одинаковые

буквы заменяются одинаковыми цифрами, разные буквы заменяются разными цифрами. Из какого

количества разных примеров можно было получить запись $0 < \overline{\mathrm{BA}} + \overline{\mathrm{BA}} - \overline{\mathrm{AFA}} < 10$?

Ответ: 31

Решение. Сумма двух двузначных чисел не больше 199, поэтому $\overline{\Pi}\Gamma\overline{\Lambda}$ — трехзначное число,

начинающееся с 1, Я = 1. Посмотрим на последнюю цифру в каждом числе, A. Она два раза

складывается и один раз вычитается, поэтому значение выражения равно A, и $A \neq 0$. $A \neq 1$, так как

 $\mathfrak{A}=1$. Кроме того, $\mathfrak{b}\geq 5$, $\mathfrak{b}+\mathfrak{b}=\overline{\mathfrak{A}\Gamma}$. Если $\mathfrak{b}=5$, то \mathfrak{A} — любая цифра, кроме 1, 0 и 5 (7 вариантов).

Далее, если Б = 6, 7, 8, 9, то A — любая цифра, кроме 0, 1, Б и Γ , а Γ определяется как цифра в разряде

единиц числа 2Б (она не равна 1, 0 или Б). Таким образов, в этих случаях остается по 6 вариантов. И

всего вариантов $7 + 4 \cdot 6 = 7 + 24 = 31$ вариант.

7.2 В примере на сложение и вычитание ученик заменил цифры буквами по правилу: одинаковые

буквы заменяются одинаковыми цифрами, разные буквы заменяются разными цифрами. Из какого

количества разных примеров можно было получить запись $10 < \overline{\text{БA}} + \overline{\text{БA}} - \overline{\text{ЯГА}} < 20$?

Ответ: 18

7.3 В примере на сложение и вычитание ученик заменил цифры буквами по правилу: одинаковые

буквы заменяются одинаковыми цифрами, разные буквы заменяются разными цифрами. Из какого

количества разных примеров можно было получить запись $20 < \overline{\text{БA}} + \overline{\text{БA}} - \overline{\text{ЯГА}} < 30$?

Ответ: 25

7.4 В примере на сложение и вычитание ученик заменил цифры буквами по правилу: одинаковые

буквы заменяются одинаковыми цифрами, разные буквы заменяются разными цифрами. Из какого

количества разных примеров можно было получить запись $30 < \overline{\text{БA}} + \overline{\text{БA}} - \overline{\text{ЯГА}} < 40$?

Ответ: 12

7.5 В примере на сложение и вычитание ученик заменил цифры буквами по правилу: одинаковые

буквы заменяются одинаковыми цифрами, разные буквы заменяются разными цифрами. Из какого

количества разных примеров можно было получить запись $40 < \overline{\text{БA}} + \overline{\text{БA}} - \overline{\text{ЯГА}} < 50$?

8.1 На острове Правды живут только рыцари, которые говорят правду, и лжецы, которые всегда лгут. Турист повстречал четырех жителей острова A,B,C,D. Житель А сказал туристу: «Ровно один из нас четверых — лжец». В сказал: «Все мы — лжецы». Тогда турист спросил у С: «Верно ли, что А — лжец?». Когда турист услышал ответ С («да» или «нет»), он точно смог вычислить, является А лжецом или нет. Кто из жителей может быть лжецом?

Только A, B и D

Только В и С

Только А и В

Точно А и В, а еще, возможно, D, но возможно, и нет

Точно В и С, а еще, возможно, D, но возможно, и нет

Ответ: точно А и В, а еще, возможно, D, но возможно, и нет

Решение. Рассмотрим первые два вопроса. В — точно лжец. Если А — рыцарь, то единственный вариант — РЛРР. Если же А — лжец, то остаются варианты ЛЛРР, ЛЛРЛ и ЛЛЛР (вариант, когда все лжецы, невозможен из-за ответа В). В первом и в четвертом С отвечает "нет", и турист не смог бы определить, кто А (так как в первом он рыцарь, а во втором — лжец). Значит, С ответил "да", остались второй и третий варианты, в которых А и В — лжецы, С — рыцарь, а D может как быть лжецом, так и не быть им.