## Муниципальный этап всероссийской олимпиады школьников по математике 2021-2022 учебный год

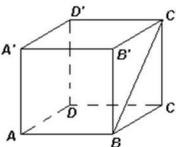
## 11 класс

**1.** Что больше: 
$$\frac{\sin 1^{\circ}}{\sin 2^{\circ}}$$
 или  $\frac{\sin 3^{\circ}}{\sin 4^{\circ}}$ ?

Решение 1. Рассмотрим разность данных чисел и преобразуем ее:

$$\frac{\sin 1^{\circ}}{\sin 2^{\circ}} - \frac{\sin 3^{\circ}}{\sin 4^{\circ}} = \frac{\sin 1^{\circ} \cdot \sin 4^{\circ} - \sin 2^{\circ} \cdot \sin 3^{\circ}}{\sin 2^{\circ} \cdot \sin 4^{\circ}} = \frac{(\cos 3^{\circ} - \cos 5^{\circ}) - (\cos 1^{\circ} - \cos 5^{\circ})}{2 \sin 2^{\circ} \cdot \sin 4^{\circ}} = \frac{-2 \sin 2^{\circ} \cdot \sin 4^{\circ}}{2 \sin 2^{\circ} \cdot \sin 4^{\circ}} = \frac{-\sin 1^{\circ}}{\sin 4^{\circ}} < 0.$$

Следовательно,  $\frac{\sin 1^{\circ}}{\sin 2^{\circ}} < \frac{\sin 3^{\circ}}{\sin 4^{\circ}}$ 


Решение 2. Рассмотрим частное данных чисел

$$\frac{\sin 1^{\circ}}{\sin 2^{\circ}}$$
:  $\frac{\sin 3^{\circ}}{\sin 4^{\circ}} = \frac{\sin 1^{\circ} \cdot \sin 4^{\circ}}{\sin 2^{\circ} \cdot \sin 3^{\circ}} = \frac{\cos 3^{\circ} - \cos 5^{\circ}}{\cos 1^{\circ} - \cos 5^{\circ}} < 1$ , так как  $\cos 1^{\circ} > \cos 3^{\circ}$ . Учитывая, что данные числа – положительные, получим, что  $\frac{\sin 1^{\circ}}{\sin 2^{\circ}} < \frac{\sin 3^{\circ}}{\sin 4^{\circ}}$ 

**Otbet:**  $\frac{\sin 3^{\circ}}{\sin 4^{\circ}}$ 

**2.** Верно ли, что в трехмерном пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°?

**Решение.** Рассмотрим, например, куб ABCDA'B'C'D' (см. рис.). Углы ABC и BC'C удовлетворяют условию, так как  $AB \perp BC'$  (по теореме о трёх перпендикулярах) и  $BC \perp C'C$ . При этом угол ABC прямой, а угол BC'C равен 45°.



Ответ: неверно.

Замечания. Разумеется, существуют и другие примеры.

**3.** В клетках квадратной таблицы  $10\times10$  стоят ненулевые цифры. В каждой строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?

**Решение.** Предположим, что найдётся ровно одно число, которое не делится на 3, и оно образовано цифрами какого-то из столбцов. Тогда сумма цифр этого числа также не делится на 3. Во всех остальных столбцах числа делятся на 3, и суммы их цифр делятся на 3. Следовательно, сумма всех чисел в таблице не делится на 3. С другой стороны, число в каждой строке делится на 3, значит, сумма цифр числа в каждой строке делится на 3, то есть сумма всех чисел таблицы кратна 3. Противоречие.

Ответ: не может.

**4.** Могут ли три различных числа вида  $2^n + 1$ , где n - натуральное, быть последовательными членами геометрической прогрессии?

**Решение.** Пусть существуют такие различные натуральные числа k, m и n, что  $2^k+1$ ,  $2^m+1$  и  $2^n+1$  – последовательные члены некоторой геометрической прогрессии. Тогда  $(2^m+1)^2=(2^k+1)(2^n+1)$ , то есть  $2^{2m}+2^{m+1}=2^{k+n}+2^k+2^n$ . Но это равенство невозможно в силу единственности представления числа в виде суммы различных степеней двойки.

Ответ: не могут.

**5.** Значение параметра a подобрано так, что число корней первого из уравнений  $4^x - 4^{-x} = 2 \cos ax$ ,  $4^x + 4^{-x} = 2 \cos ax + 4$  равно 2021. Сколько корней при том же a имеет второе уравнение?

Решение. Преобразуем второе уравнение:

$$4^{x} + 4^{-x} = 2 \cos ax + 4 \iff 4^{x} - 2 + 4^{-x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{-x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{-x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{-x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow 4^{x} + 4^{x} = 2(1 + \cos ax) \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} = 4\cos^{2} \frac{ax}{2} \Leftrightarrow (2^{x} - 2^{-x})^{2} \Leftrightarrow$$

$$\begin{bmatrix} 4^{x/2} - 4^{-x/2} = 2\cos\frac{ax}{2}, \\ 4^{x/2} - 4^{-x/2} = -2\cos\frac{ax}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} 4^{x/2} - 4^{-x/2} = 2\cos\frac{ax}{2}, \\ 4^{-x/2} - 4^{x/2} = 2\cos\frac{ax}{2}. \end{bmatrix}$$

Оба уравнения этой совокупности сводятся к первому уравнению из условия задачи заменами x=2y и x=-2z соответственно. Поэтому каждое из этих двух уравнений имеет 2021 корень. Если же эти уравнения имеют общий корень  $x=x_0$ , то  $4^{x_0/2}-4^{-x_0/2}=0$  и  $\cos \frac{ax}{0/2}=0$ , что невозможно. Следовательно, эти уравнения не имеют общих корней, а второе уравнение из условия имеет  $2\cdot2021=4042$  корня.

Ответ: 4042.

## Общие критерии оценки:

| Баллы | Правильность (ошибочность) решения                                                                                                                                    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7     | Полное верное решение.                                                                                                                                                |
| 6-7   | Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение.                                                                                           |
| 5-6   | Решение в целом верное. Однако оно содержит ряд ошибок, либо не рассмотрение отдельных случаев, но может стать правильным после небольших исправлений или дополнений. |
| 4     | Верно рассмотрен один из двух (более сложный) существенных случаев, или в задаче типа «оценка + пример» верно получена оценка.                                        |
| 2-3   | Доказаны вспомогательные утверждения, помогающие в решении задачи.                                                                                                    |
| 0-1   | Рассмотрены отдельные важные случаи при отсутствии решения (или при ошибочном решении).                                                                               |
| 0     | Решение неверное, продвижения отсутствуют.                                                                                                                            |
| 0     | Решение отсутствует.                                                                                                                                                  |