
Муниципальный этап Всероссийской олимпиады школьников по информатике 2019/2020 уч. года Оренбургская область

Задания для 7-8 классов

Каждая задача оценивается в 100 баллов. Ответом для первых трех задач является строка или несколько строк. Решения четвертой и пятой задач должны быть оформлены в виде компьютерных программ на одном из языков программирования Pascal, C++, C#, Python. Исходные данные во всех задачах извлекаются из стандартного консольного входа. Результаты выполнения программ поступают на стандартный консольный выход. Ограничение по времени выполнения теста для всех задач — 1 секунда (для компьютера Pentium IV и выше).

Задача 1. Плитки

Иван Иванович решил выложить пол в своей комнате красивой квадратной плиткой. Он хочет, чтобы плитки с узором были выложены в n рядов по m плиток в каждом ряду. Для большей красоты Иван Иванович хочет, чтобы вокруг каждой плитки с узором были белые плитки. Помогите Ивану посчитать, Ивановичу сколько белых понадобится. Например, если он хочет выложить плитки с узором в 2 ряда по 3 плитки в каждом ряду, то ему понадобится 29 белых плиток (рисунок справа). Запишите

формулу для вычисления количества белых плиток в зависимости от n и m.

Ответом к этой задаче является некоторое выражение, которое может содержать целые числа, переменные m, n, операции сложения (обозначается «+»), вычитания (обозначается «-»), умножения (обозначается «*»), деления (обозначается «/») и круглые скобки для изменения порядка действий. Например, запись вида «2n» для обозначения произведения числа 2 и переменной n неверная, нужно писать «2 * n». Наличие пробелов внутри строки-выражения не важно.

Пример правильного (по форме записи) выражения: n + (m/2 - 1) * 7.

Задача 2. Путь в лабиринте

Иван Иванович любит играть в игру, представляющую собой лабиринт из 5 комнат: A, B, С, D и Е. Изначально в распоряжении Ивана Ивановича есть 20 монет. Проходя по коридору из одной комнаты в другую, Иван Иванович может приобретать или терять монеты. Справа представлена таблица, которая отображает, сколько монет приобретает или теряет Иван

Иванович при переходе. Если на пересечении какой-то строки и какого-то столбца расположено положительное число, то в этом коридоре монеты приобретаются, а если отрицательное, то монеты теряются. Если клетка пуста, то не существует коридора, соединяющего эти комнаты. Например, при переходе из комнаты A в комнату B, Иван Иванович теряет 15 монет, а при переходе из B в A приобретает 2 монеты, а перейти из комнаты A в комнату C напрямую Иван Иванович не может. Ниже вам предложены 10 пар комнат:

	\boldsymbol{A}	В	\boldsymbol{C}	D	E
\boldsymbol{A}		-15			-10
В	2		-8	-6	
C		2		-2	
D E	2		1		-5
\boldsymbol{E}	5			4	

A - DB - C

C - E

D - A

E - A

A - B

B - E

C - AD - E

E - C

Для каждой пары комнат укажите максимально возможное количество монет, которое может оказаться у Ивана Ивановича после прохождения от первой комнаты из этой пары до второй. Помните, что каждый раз (для каждой пары) Иван Иванович начинает свой путь, имея 20 монет.

Муниципальный этап Всероссийской олимпиады школьников по информатике 2019/2020 уч. года Оренбургская область

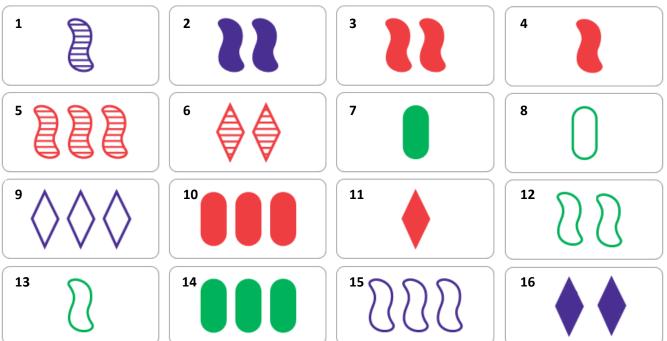
В качестве ответа укажите 10 строк, содержащих ответы на вопрос задачи (максимальное количество монет к концу пути). Если для какой-то пары комнат Вы не можете найти оптимального пути, то оставьте строку пустой.

Задача 3. Игра «Сет»

Сет – карточная игра, придуманная Маршей Фалко в 1991 году. Колода карт для игры состоит из 81 карты. Одинаковых карт в колоде нет. Изображение на каждой карте содержит одну или несколько фигур, и имеет 4 характеристики:

- 1) Форма фигур (волны, овалы, ромбы)
- 2) Цвет фигур (красный, синий, зеленый)
- Количество фигур (1, 2 или 3)
- 4) Степень закраски фигур (сплошная, заштрихованная, только контур).

Сет — это такой набор из 3 карточек, что каждая из перечисленных выше характеристик либо одинаковая на всех 3 карточках, либо различна на всех 3 карточках. Справа приведен пример сета:



- 1) Форма фигур одинаковая (ромб)
- 2) Цвет фигур одинаковый (зеленый)
- 3) Количество фигур различное (2, 3, 1)
- 4) Степень закраски различная (заштрихованная, сплошная, только контур)

Ниже приведен пример набора, не образующего сет:

- 1) Форма фигур различная;
- 2) Цвет фигур различный;
- 3) Степень закраски различная
- 4) А количество фигур (3, 1, 3) не удовлетворяет условию сета, так как и не является одинаковым для всех карточек, и не является разным для всех 3 карточек (количество 3 повторяется).

Ниже изображены 16 карточек. Вам нужно найти среди них все сеты.

Каждый сет нужно написать в новой строке, указав номера образующих его карточек через пробел в любом порядке. Одна и та же карточка может входить в разные сеты. Чем больше правильных сетов вы напишите, тем больше баллов получите. За неправильные сеты баллы будут уменьшаться.

Муниципальный этап Всероссийской олимпиады школьников по информатике 2019/2020 уч. года Оренбургская область

Задача 4. Правило 90:9:1

Эмпирический принцип 90:9:1 описывает соотношение между количеством людей, которые обычно только читают сообщения в сообществе в социальной сети, комментируют их или создают новые сообщения. Согласно нему, 1% или менее людей будут создавать новый контент, 9% будут изменять его или комментировать, а 90% просто молча знакомиться с ним без какого-либо участия.

Дан размер аудитории n, требуется вычислить, сколько в этой аудитории создателей, комментаторов и молчунов, учитывая, что количество человек в каждой группе должно быть целым (возможно полученным округлением вверх или вниз из 1%, 9%, 90% соответственно) и в сумме давать n.

Формат входных данных:

В единственной строке входных данных записано целое число $n (100 \le n \le 10^9)$.

Формат выходных данных:

Выведите три целых числа через пробел — количество создателей, комментаторов и молчунов. Если возможно несколько решений, то выведите любое из них. Главное, чтобы количество создателей составляло 1% от аудитории (возможно с округлением до целого числа вверх или вниз), количество комментаторов составляло 9% аудитории (также возможно с округлением), и количество молчунов составляло 90% (также возможно с округлением). Общее количество создателей, комментаторов и молчунов должно быть равно n.

Примеры входных данных:	Примеры выходных данных:		
100	1 9 90		
150	2 13 135		

Задача 5. Число Эйлера

Число $e \approx 2,718281828459...$ находит применение во многих разделах математики, в первую очередь алгебре и математическом анализе. Очень часто это число называют числом Эйлера в честь великого математика XVIII в. Леонарда Эйлера (1707-1783).

Леонард Эйлер впервые использовал букву e для обозначения этого числа в книге «Механика», изданной в 1736 г., хотя в рукописях и письмах такое обозначение было использовано начиная с 1728 г.

В своих книгах, статьях и рукописях Эйлер рассмотрел множество способов вычисления числа e. Очень интересен способ, связанный с представлением числа Эйлера в виде бесконечной непрерывной дроби.

$$e = 2 + \frac{2}{2 + \frac{3}{3 + \frac{4}{4 + \frac{5}{5 + \dots}}}},$$

Для вычисления приближенного значения числа Эйлера дробь обрывают на каком-то шаге, например

$$e \approx 2 + \frac{2}{2 + \frac{3}{3 + \frac{4}{4 + \frac{5}{5}}}} = 2 + \frac{2}{2 + \frac{3}{3 + \frac{4}{5}}} = 2 + \frac{2}{2 + \frac{15}{19}} = \frac{144}{53}.$$

Увеличивая число шагов, можно получить приближенное выражение числа Эйлера с высокой точностью в виде дроби. Необходимо написать программу для поиска числителя и знаменателя такой дроби при условии, что выбирается первый знаменатель, строго больший заданного числа n.

Формат входных данных:

В единственной строке входных данных записано целое число $n \ (2 \le n \le 10^9)$

Формат выходных данных:

Выведите два натуральных числа, разделенных пробелами — числитель и знаменатель дроби, приближенно выражающей число Эйлера, при этом знаменатель должен быть минимальным, но больше n.

Пример входных данных:	Пример выходных данных:		
15	144 53		