1/6 .

S,

$$S_1 = S - \frac{1}{6} S, \tag{1}$$

$$S_2 = \frac{1}{6} S. \tag{2}$$

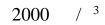
 $S_1 = V_1 t$, $S_2 = V_2 t$.

$$V_1 t = S - \frac{1}{6} S, \tag{3}$$

$$V_2 t = \frac{1}{6} S. \tag{4}$$

(3) (4)

$$\frac{V1}{V2} = \frac{S - \frac{1}{6}S}{\frac{1}{6}S} = 5.$$


(1) 2

(2) 1

(3) (4) 5

F

/ 3.

F, 1000

$$mg l_1 = F l_2, (1)$$

m -

, **l**₁ -

, **l**₂ -F

$$F = V g$$

$$V = \frac{m}{\rho_{\text{тела}}}.$$

$$(\text{mg} - \frac{\text{m}}{\rho_{\text{тела}}} g) = F l_3,$$

$$l_3 - F$$

$$.$$
(2)

(1) (2)

$$\frac{l_{\mathbb{Z}}}{l_{\mathbb{S}}} = \frac{m}{m - \rho \frac{m}{\rho_{\text{тела}}}} = \frac{m}{m(1 - \frac{\rho_{\text{B}}}{\rho_{\text{T}}})} = \frac{1}{1 - \frac{1000}{2000}} = 2$$

F

 	 2
	,

F = mg

$$F = V g,$$

$$V = \frac{m}{\rho_{\text{тела}}}$$
.

$$F = mg - \frac{m}{\rho_{\text{тела}}} g,$$

$$= Fh = (my - \frac{m}{\rho_{\text{тела}}} g)h = m gh(1 - \frac{\rho_{\text{воды}}}{\rho_{\text{тела}}}) = 10 \quad \cdot 10 \quad / \quad \cdot 10 \quad (1 - \frac{1}{2\kappa \Gamma} \frac{\kappa \Gamma/M^3}{/M^3}) = 500 \quad .$$

.

••••	• • • • • • •		• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	. 1
•			•••••		. 2
		••••	• • • • • • •		2
		••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	4

100 , 80 %, 0 , $+20^{\circ}$. $= 2,1\cdot10^{3}$ / \cdot° , -20°, 100 $=4,2\cdot10^3$ / ·° . $3,3\cdot 10^5$ / , Q=N, - . . . , N- $Q_1 = m(t - t),$ $Q_2 = m$, $Q_3 = m$ (t - t). N = m(t - t) + m + m (t - t), $=\frac{m_\pi \left[\text{C}_\pi \left(\textbf{t}_{\Pi \Pi} - \textbf{t}_\pi \right) + \lambda_\pi + \text{C}_\text{B} \left(\textbf{t}_\text{B} - \textbf{t}_{\Pi \Pi} \right) \right]}{\eta N} = \frac{0.1 \left[2.1 \cdot 1^{-3} \left(0 - \left(-2^- \right) \right) + 3.3 \cdot 1^{-5} + 4.2 \left(2^- - 0 \right) \right]}{0.8 \cdot 1} = 570 \; (\ \) = 1.2 \cdot 1 + 1.2$ = 9,5

..... 1

	• •	•	•	•	•	•	•	•	•	•			•		•		 			•		•		•	•	•	•	•	•	•	•	•	•		4	4
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•						•		1
. .	 			•	•	•		•		•	•	•	•	•	•		•	•	•		•			•						•		•	•			1