8 класс

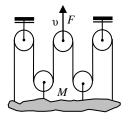
1. Осторожно, крокодил!

(Замятнин М.)

Крокодил Гена развивает скорость $v_1 = 5$ м/с, но пробежать может не более $L_1 = 100$ м. После этого у него остаются силы только на последний рывок с $v_2 = 10$ м/с на расстояние $L_2 = 10$ м. Чебурашка умеет бегать со скоростью v_3 . Какую минимальную безопасную дистанцию L от крокодила должен соблюдать Чебурашка, чтобы Гена не смог его догнать? Рассмотреть случаи, когда скорость Чебурашки $v_3 = 4$ м/с и $v_3 = 6$ м/с.

Возможное решение

Если скорость Чебурашки меньше скорости крокодила, то расстояние между ними все время сокращается, и в худшем случае встреча может произойти в конце движения Гены через $\tau = \frac{L_1}{\nu_1} + \frac{L_2}{\nu_2} = 21 \text{ c.}$ За это время


Чебурашка должен оказаться не менее чем на L_1+L_2 от начального положения крокодила. Следовательно, $L=L_1+L_2-\upsilon_3\tau=26\,$ м. В случае, если скорость Чебурашки больше скорости обычного бега Гены, ему надо опасаться только быстрого рывка крокодила (крокодил может сделать этот рывок и в самом начале). Тогда безопасная дистанция определяется сближением за время рывка. $L=\frac{L_2}{D_1}(\upsilon_2-\upsilon_3)=4\,$ м.

Критерии оценивания

•	Найдены времена движения крокодила на отдельных участках	2 балла
•	Идея условия встречи при $v_3 < v_2$	2 балла
•	Найдено L в первом случае	2 балла
•	Идея условия встречи при $v_3 > v_2$	2 балла
•	Найдено L во втором случае	2 балла

2. Подъем (Фольклор)

Груз массой M=120 кг поднимают равномерно со скоростью u=2 км/ч с помощью системы блоков так, что он движется поступательно (не вращается). Какую силу F для этого надо прикладывать к среднему блоку, и с какой скоростью υ поднимается этот блок? Массой троса и блоков пренебречь. Трения в осях блоков нет. Трос нерастяжим. Принять g=10 Н/кг.

Возможное решение

Из-за отсутствия трения и невесомости троса, сила натяжения троса T всюду одинакова. Груз уравновешивает сила 6T = Mg. Блок, к которому приложена сила F, тоже невесом, следовательно, сумма сил приложенных к блоку равна нулю и F = 2T. Окончательно, F = Mg/3 = 400 Н. Для нахождения связи между скоростями блока и груза воспользуемся условием нерастяжимости троса. Подъем блока, за который тянут груз, на некоторую высоту L при неизменном положении груза, потребовал бы удлинения троса на 2L. В свою очередь, подъем груза на высоту h, при неизменном положении блока, был бы возможен при уменьшении длины троса на 6h. Но, по условию трос нерастяжим, следовательно, 6h = 2L. Откуда, скорости блока и груза связаны соотношением v = 3u = 6 км/ч. К этому же результату можно было придти из энергетических соображений.

Критерии оценивания

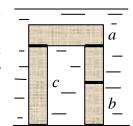
•	Обосновано равенство сил натяжения троса	2 балла
•	Условие равномерного подъема груза (6 $T = Mg$)	2 балла
•	Учтена невесомость блока ($F = 2T$)	2 балла
•	Ответ для силы F	1 балл
•	Обоснование связи скоростей блока и груза	2 балла
•	Ответ для скорости блока	1 балл

3. Лёд и вода (Фольклор)

В калориметр поместили 100 г льда и налили 25 г воды. После установления теплового равновесия оказалось, что масса льда не изменилась. Какие значения начальной температуры могли быть у льда в таком эксперименте? Удельная теплоемкость льда $2100 \, \text{Дж/(кг}^0\text{C})$, удельная теплоемкость воды $4200 \, \text{Дж/(кг}^0\text{C})$. Удельная теплота плавления льда $330 \, \text{кДж/кг}$. Теплоемкостью калориметра и теплообменом с окружающей средой можно пренебречь.

Возможное решение

Так как после теплообмена лед находится в равновесии с жидкостью, то температура получившейся смеси 0^{0} С. Масса льда не изменилась, что указывает на отсутствие процессов плавления и кристаллизации. По условию вода изначально была в жидком состоянии, следовательно, остыть она могла не более чем на 100^{0} С. Составим уравнение теплового баланса $m_{_{\rm I}}c_{_{\rm J}}\Delta t_{_{\rm I}}=m_{_{\rm B}}c_{_{\rm G}}\Delta t_{_{\rm B}}$. Откуда, с учетом масс и теплоемкостей, максимальное изменение температуры льда 50^{0} С. Окончательно, лед мог иметь температуру от 0 до -50^{0} С.


Критерии оценивания

•	Обоснована конечная температура смеси 0^{0} С	1 балл
•	Указано максимальное изменение температуры воды	2 балла
•	Обосновано отсутствие процессов плавления и кристаллизации	1 балл
•	Уравнение теплового баланса	3 балла
•	Найдена минимальная температура льда	2 балла
•	Явно указан диапазон возможных температур льда	1 балл

4. Кирпичи в аквариуме

Кирпич представляет собой параллелепипед, ребра которого относятся как a:b:c=1:2:4. Плотность кирпича $\rho_{\kappa}=3\rho_{o}$, где $\rho_{o}=1000$ кг/м³ — плотность воды. Кирпичная конструкция, изображенная на рисунке, и состоящая из 4-х кирпичей, расположена на дне аквариума и полностью погружена в воду. Вода затекает во все стыки этой конструкции и под нее. Чему равно отношение давления левой «ноги» на дно аквариума к давлению правой ноги? Как изменится это отношение, если воду из аквариума вылить?

(Кармазин С.)

Возможное решение

На каждый кирпич в данной конструкции действует сила Архимеда F. Следовательно, каждый кирпич давит на опору с силой T = (mg - F), при этом верхний кирпич давит на две симметричные опоры с силой T/2 на каждую. Площадь основания левой ноги $S_\pi = ab = 2a^2$, площадь основания правой ноги равна $S_\pi = ac = 4a^2$. Следовательно, давление на дно аквариума левой ноги $P_\pi = ((3/2)T)/2a^2$, а правой ноги $P_\pi = ((5/2)T)/4a^2$. Откуда, $P_\pi/P_\pi = 6/5$. Если воду из аквариума вылить, отношение давлений не изменится, так как в этом случае все кирпичи будут давить на свою опору с силой Q = mg, а верхний кирпич будет давить на свои опоры с силой Q/2.

Критерии оценивания

•	Указано, что давление по определению $P = F/S$	1 балл
•	Учтена сила Архимеда при расчете давления на опору	2 балла
•	Указано, что верхний кирпич давит одинаково на обе опоры	2 балла
•	Правильно записаны площади опор (отличие в 2 раза)	2 балла
•	Проведены вычисления и получен правильный ответ	2 балла
•	Показано, что без воды отношение не изменится	1 балл