Возможные решения задач

8 класс

Задача 1. Плавающие шары

Два шара одинакового объема и разной плотности закреплены на концах легкого тонкого стержня, подвешенного на расстоянии 1/3 длины от тяжелого шара. Точка повеса стержня находится на поверхности воды, при этом один из шаров погружается в воду на три четверти своего объема, а другой — на одну четверть. Найти плотность более тяжелого шара ρ_2 , если плотность легкого шара равна ρ_1 , а плотность воды ρ_0 . (10 баллов)

Возможное решение

Пусть объем шара равен V, длина стержня равна L. На каждый шар действует сила тяжести $\rho_1 g V$ или $\rho_2 g V$, а также выталкивающая сила, пропорциональная объему подгруженной в воду части шара. Рассмотрим случая, когда тяжелый шар погружен на три четверти своего объема в воду и когда тяжелый шар погружен на одну четверть. В первом случае условие равновесия (равенство моментов сил вращающих рычаг в разные стороны) примет вид

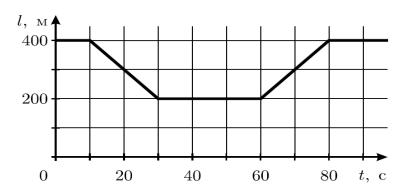
$$(\rho_2 gV - 0.75\rho_0 gV)L/3 = (\rho_1 gV - 0.25\rho_0 gV)2L/3.$$

Откуда находим плотность тяжелого шара $\rho_2 = 2\rho_1 + 0.5\rho_0$.

Во втором случае условие равновесия запишется в виде

$$(\rho_2 gV - 0.25\rho_0 gV)L/3 = (\rho_1 gV - 0.75\rho_0 gV)2L/3.$$

Откуда находим плотность тяжелого шара $\rho_2 = 2\rho_1 - 1,25\rho_0$. Второй ответ имеем смысл при $2\rho_1 - 1,25\rho_0 > \rho_1$, то есть при $\rho_1 > 1,25\rho_0$.


Критерии оценивания решения:

- 1. Записано условие равновесия стержня в первом случае 3 балла.
- 2. Найдено значение плотности в первом случае $-\,2\,$ балла.
- 3. Записано условие равновесия стержня во втором случае 2 балла.
- 4. Найдено значение плотности во втором случае 2 балла.
- 5. Найдено условие, при котором возможен второй случай 1 балл

Задача 2. Два автомобиля

Два автомобиля движутся друг за другом по шоссе на расстоянии 400 метров с постоянной скоростью v_1 , затем они въезжают на мост, где движутся с другой постоянной скоростью v_2 , и съезжают с моста обратно на шоссе. На рисунке изображён график зависимости расстояния l между двумя едущими друг за другом автомобилями от времени t. Найдите скорости v_1 и v_2 , а также длину моста.

(10 баллов)

Возможное решение

Пока оба автомобиля движутся по шоссе или по мосту, расстояние между ними остаётся постоянным: $l_1 = 400$ м или $l_2 = 200$ м. Расстояние l начинает уменьшаться, когда первый автомобиль въезжает на мост. При движении первого автомобиля по мосту расстояние между ним и вторым автомобилем, движущимся по шоссе, как видно из графика, сокращается за $30-10=20\,\mathrm{c}$ на $l_1-l_2=200\,\mathrm{m}$, то есть они сближаются со скоростью $v_1-v_2=10\,\mathrm{m/c}$. Таким образом, скорость $v_1>10\,\mathrm{m/c}$, и время, за которое второй автомобиль доедет до моста, не может быть больше $400\,\mathrm{m}/10\,\mathrm{m/c}=40\,\mathrm{c}$.

В момент 30 с расстояние между автомобилями перестаёт меняться. Это означает, что они снова движутся с одинаковыми скоростями — либо первый автомобиль съехал с моста, либо второй въехал на мост. В первом случае въезд второго автомобиля на мост будет соответствовать моменту времени 60 с, когда расстояние между автомобилями начинает вновь расти (см. график). Поскольку это произошло только через 50 с после въезда первого автомобиля на мост, первый случай невозможен, и в данных условиях реализуется вторая возможность, когда в момент 60 с первый автомобиль съезжает с моста.

Значит, второй автомобиль проехал по шоссе $l_1 = 400$ м за время 20 с, и его скорость была равна $v_1 = 400/20 = 20$ м/с. Скорость автомобилей на мосту, очевидно, равна $v_2 = v_1 - 10$ м/с = 10 м/с. Первый автомобиль преодолел мост со скоростью 10 м/с за время 50 с, так что длина моста равна L = 10 м/с \times 50 с = 500 м.

Критерии оценивания решения:

- 1. Проведена оценка сверху времени движения второго автомобиля до моста -1 балл.
- 2. Рассматриваются две возможных интерпретации излома графика в 30 секунд, доказано, что реализуется только дна возможность 3 балла.
- 3. Найдена скорость движения по шоссе 2 балла.
- 4. Найдена скорость движения по шоссе 2 балла.
- 5. Найдена длина моста 2 балла.

Задача 3. Паровой молот

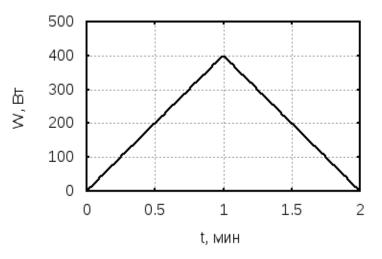
Паровой молот массой 4 кг падает на железную болванку массой 6 кг, при этом скорость молота в момент удара равна 5 м/с. Насколько градусов нагревается

болванка от удара, если на ее нагревание идет 80% полученной при ударе теплоты? Удельная теплоемкость железа $c = 460 \, \text{Дж/(кг °C)}$. (10 баллов)

Возможное решение

80% кинетической энергии молота $E = mv^2/2$ идет на нагревание железной болванки, при этом поглощается количество теплоты $Q = cm_1\Delta t$, таким образом, уравнение теплового баланса имеет вид 0.8E = Q. Откуда находим изменение температуры болванки $\Delta t = 0.8mv^2/(2cm_1) = 5.2$ °C.

Критерии оценивания решения:


- 1. Записана кинетическая энергия молота 3 балла.
- 2. Записано количество теплоты, необходимое для нагревания болванки 2 балла.
- 3. Составлено уравнение теплового баланса 3 балла.
- 4. Найдено изменение температуры 2 балла.

Задача 4. Школьник и колодец

Школьник поднимает ведро с водой из колодца глубиной 20 метров и справляется с этой задачей за 2 минуты, при этом первую половину времени подъема ведра на поверхность его мощность равномерно увеличивается от нуля до 400 Вт, а затем равномерно уменьшается до нуля. Определите, какую работу совершил школьник за время подъема ведра с водой. (10 баллов)

Возможное решение

Изобразим на рисунке зависимость мощности, развиваемой времени. школьником, OT мощность Поскольку сначала увеличивается, а затем убывает равномерно, то график состоит из двух отрезков И образует равнобедренный треугольник горизонтальной осью, вдоль которой откладывается время. Полная работа, совершенная

школьником за время подъема ведра из колодца численно равна площади под графиком $A=0.5W_{\rm max}\Delta t=24~{\rm kBt}.$

Критерии оценивания решения:

- 1. Построен график зависимости мощности от времени 5 баллов.
- 2. Работа определяется как площадь под графиком 4 балла.
- 3. Найден правильный ответ 1 балл.
- 4. Если работа вычисляется как произведение средней мощности (200 Вт) на время, без графического или иного обоснования идеи осреднения, то такое решение оценивается не более, чем в 5 баллов.