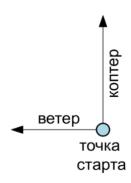
Всероссийская олимпиада школьников по физике


2018-2019 учебный год Муниципальный этап Свердловская область

9 класс

Решения задач и критерии оценивания

Задача 1. Квадрокоптер (8 баллов)

Квадрокоптер запрограммирован на облет территории по траектории в форме квадрата, ориентируясь по компасу (летит t секунд на север, затем столько же на восток, юг и т.д.). К сожалению, программист не учел, что на улице дует западный ветер. В результате, пролетев только 3t секунд, квадрокоптер внезапно оказался на точке, откуда он стартовал. Считая, что ветер дул с постоянной скоростью V, найдите скорость квадрокоптера. Во сколько раз сократился его маршрут по сравнению с запрограммированным вариантом?

Решение

Траектория коптера будет иметь следующий вид:

Введем ось ОХ, которая будет направлена против ветра вдоль той же прямой. Воспользуемся тем фактом, что квадрокоптер вернулся в исходную точку. Запишем его смещение после каждого этапа полета. Пусть V_k - скорость квадрокоптера.

При полете по компасу на север (отрезок AB) смещение вдоль оси Ox: -Vt, поскольку направление движение коптера перпендикулярно ветру.

При полете на восток (отрезок BD) он преодолевает сопротивление ветра, поэтому результирующая скорость будет $(V_k - V)$, причем $V_k > V$, так как в другом случае коптер бы никогда не смог вернуться в исходную точку. В итоге он сместится на $(V_k - V)t$ в положительном направлении оси Ох. При полете на юг (отрезок DA) коптер мы используем те же рассуждения, что и в случае полета на север, смещение будет отрицательное: -Vt вдоль оси Ох.

Поскольку он вернулся в точку старта, суммарное смещение должно быть равно нулю.

Отсюда:
$$(V_k - V)t - Vt - Vt = 0$$

В итоге: $V_k = 3V$.

Запрограммированный путь квадрокоптера был равен $4tV_k = 12tV$, из-за ветра его маршрут сократился. Учитывая симметрию задачи, достаточно посчитать только две стороны равнобедренного треугольника. При полете на Север путь составил:

$$l=t\sqrt{V^2{}_k+V^2}=t\sqrt{10}V\ .$$

При пути на Запад:

$$l=2tV.$$

В итоге отношение:

$$\frac{12tv}{tv(2\sqrt{10}+2)} = \frac{6}{\sqrt{10}+1} \simeq 1.4$$
 pasa.

Критерий оценивания		Балл
Изображена верная схема движения квадрокоптера		2
Записаны верные уравнения движения по каждому из периодов полета		2
Вычислено значение скорости квадрокоптера	$V_k = 3V$	2
Подсчитано отношение длин маршрутов	$\frac{6}{\sqrt{10}+1} \simeq 1.4$	2

Задача 2. Лужа(10 баллов)

Весной на солнце вода в луже имеет температуру $10~^{\circ}$ С и нагревается на $1~^{\circ}$ С в час. Сосулька над лужей начала таять, с нее вниз полетели холодные капли температурой $0~^{\circ}$ С. Когда в лужу начало попадать n капель в час, нагрев воды в луже остановился. Определите, во сколько раз масса воды в луже больше массы средней капли. Насколько остынет вода в луже за час, если капли будут капать в полтора раза чаще? Считать, что температура воды в луже выравнивается быстро. Масса воды в луже постоянна, а лишняя вода стекает в виде ручейка.

Решение:

Солнце нагревает лужу на $\Delta t_1 = 1$ 0 С в час. Количество теплоты, которое вода в ней при этом получает, равно

$$Q_{\pi} = cm_{\pi}\Delta t_1,(1)$$

где m_{π} - масса воды в луже.

Если в лужу попадает n капель в час, то количество тепла, которое они отнимают, равно

$$Q_{\kappa 1} = ncm_{\kappa} \Delta t_2, \qquad (2)$$

где ${\rm m_{\kappa}}$ - масса средней капли, $\Delta t_2=10~{\rm ^{0}C}$ - разница между температурой капли и лужи. Из соотношения $Q_{\scriptscriptstyle \Pi}=Q_{\rm \kappa 1}$ нетрудно найти искомое отношение масс

$$\frac{m_{\pi}}{m_{\kappa}} = \frac{n\Delta t_2}{\Delta t_1} = 10n \qquad (3)$$

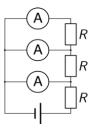
Если в лужу будет капать 1,5n капель в час, то они будут отнимать количество теплоты

$$Q_{\kappa 2} = 1.5ncm_{\kappa} \Delta t_2 \quad (4)$$

Величину Δt_3 , на которую уменьшится температура воды в луже за час, найдем из уравнения теплового баланса

$$cm_{\pi} \Delta t_{3} = Q_{\kappa 2} - Q_{\pi} = 0.5ncm_{\kappa} \Delta t_{2}(5)$$

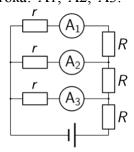
$$\Delta t_{3} = \frac{Q_{\kappa 2} - Q_{\pi}}{cm_{\pi}} = \frac{0.5nm_{\kappa} \Delta t_{2}}{m_{\pi}} = \frac{0.5n \cdot 10}{10n} = 0.5 \, {}^{0}\text{C}(6)$$


Допустим следующий ход рассуждений, также приводящий к ответу на второй вопрос задачи: теплоты Q_{π} , передаваемой солнцем луже за час, хватает на нагрев воды в ней на 1

 0 С. Теплота, которую забирают п капель, равна Q_{π} . Если добавить дополнительные 0,5 п капель, в сумме лужа потеряет количество теплоты 0,5 Q_{π} и вместо нагрева охладится на 0,5 0 С.

Критерий оценивания		Балл
Верно записаны выражения для $Q_{\scriptscriptstyle \rm J}$, $Q_{\scriptscriptstyle m K1}$	(1), (2)	3
Найдено соотношение масс воды в луже и капли	10n	4
Из верных соображений получен ответ на второй вопрос задачи	0,5 °C	3

Задача 3. Амперметры (8 баллов)


В электрической схеме присутствуют три одинаковых амперметра и три резистора одинакового номинала, который неизвестен. Показания крайнего амперметра I_1 , следующего $I_2 = 2I_1$. Укажите токи на схеме. Во сколько раз показания последнего амперметра (I_3) будут отличаться от I_1 ?

Решение

В данной задаче мы имеем три параллельных участка цепи, для двух из которых известны значения протекающих токов. В условии не указано, где протекают токи. Пронумеруем амперметры в порядке приближения к источнику тока: A1, A2, A3.

Поскольку средний амперметр A2 показывает значение, отличное от нуля, амперметры не являются идеальными и имеют внутреннее сопротивление, которое одинаково у всех амперметров по условию задачи. Учитывая тот факт, что все амперметры включены параллельно, но у всех, кроме A3, последовательно с ними более одного резистора R, показания амперметра A3 должны быть максимальными, а A1 минимальными. Следовательно, ток I_1 должен течь именно через амперметр A1, поскольку $I_2 > I_1$.

Запишем соотношение протекающих токов для участка с амперметрами A_1 и A_2 . Поскольку при параллельном соединении напряжения на цепочках совпадают, с использованием U = IR, мы можем написать отношение для токов и сопротивлений:

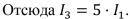
$$\frac{I_1}{I_2} = \frac{r}{r+R}$$

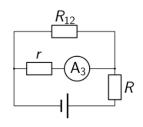
где г - внутреннее сопротивление амперметра. Исходя из того, что

$$I_2 = 2I_1$$
, (1)

немедленно вытекает тот факт, что

$$r = R.(2)$$

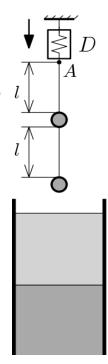

Подсчитаем суммарное сопротивление участка цепи с амперметрами A_1 и A_2 . С учетом соотношения (2) оно будет равно: $R_{12}=R+2/3\cdot R=5/3\cdot R$. Если нарисовать эквивалентную схему, то амперметр A_3 будет включен в цепь параллельно с этим сопротивлением. Запишем вновь соотношение токов при параллельном соединении,


учитывая, что ток, идущий через сопротивление R_{12} , равен сумме показаний амперметров A_1 и A_2 :

$$\frac{I_1 + I_2}{I_3} = \frac{r}{R_{12}} = \frac{r}{5/3 \cdot R}$$

Подставляя равенства (1) и (2), получаем:

$$\frac{I_1 + 2I_1}{I_3} = \frac{3}{5}.$$



Критерий оценивания		Балл
Правильно и аргументированно пронумерованы токи через амперметры		1
Установлен факт, что внутреннее сопротивление амперметра совпадает с сопротивлением нагрузки		3
Верно посчитано значение тока через третий амперметр I_3	$I_3 = 5 \cdot I_1$	4

Задача 4. Два шара (14 баллов)

В сосуд с постоянной площадью сечения $S=80~{\rm cm}^2$ налиты две несмешивающиеся жидкости: 1 литр воды ($\rho_{\rm вод}=1,0~{\rm г/cm}^3$) и 1 литр бензина ($\rho_{\rm бен}=0,71~{\rm г/cm}^3$). Над сосудом на подвесе висят два маленьких шарика одинакового диаметра, причем плотности верхнего и нижнего шариков относятся как 4:3. В основании подвеса установлен динамометр D, показывающий силу натяжения F в прикрепленной к нему нити. Шарики начинают медленно погружать в жидкость. До момента погружения динамометр показывал значение 5мH, а после полного погружения первого шарика его показания уменьшились на треть. Определите объём и плотности материалов шариков. Постройте график зависимости показаний динамометра от высоты точки A над уровнем жидкости до момента её касания поверхности. Длина обоих отрезков нити $l=10~{\rm cm}$. Ускорение свободного падения: $g=9,8~{\rm m/c}^2$.

Решение:

Рассмотрим силы, действующие на грузы до их погружения в жидкость. Запишем ОУД для верхнего

$$m_1 g - T_1 + T_2 = 0 \quad (1)$$

и нижнего шарика:

$$m_2 g - T_2 = 0. (2)$$

Здесь T_1 , T_2 — силы натяжения, действующие в первом и втором отрезке нити. Тогда динамометр будет показывать величину T_1 .

$$T_2 = m_2 g; \ T_1 = m_1 g + T_2 = m_1 g + m_2 g = (\rho_1 + \rho_2) V g = F_0,$$
 (3)

где ρ_1 , ρ_2 — плотности материалов шариков, V — их объём.

После опускания в жидкость нижнего шарика (2) на него дополнительно будут действовать сила Архимеда со стороны бензина (бензин будет расположен выше, т.к. имеет меньшую плотность):

$$m_2 g - T_2 - \rho_{\text{feh}} V g = 0.$$
 (4)

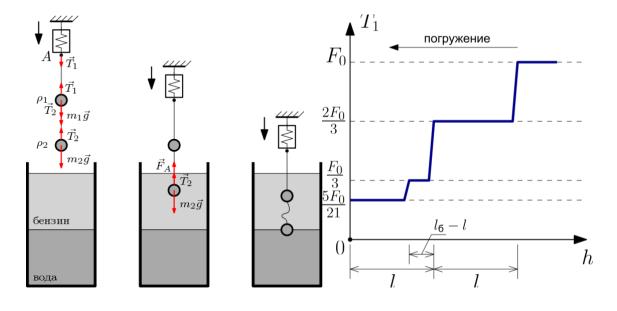
$$T_2 = m_2 g - \rho_{\text{бен}} V g, T_1 = (\rho_1 + \rho_2 - \rho_{\text{бен}}) V g = \frac{2}{3} F_0.$$
 (5)

Сравнивая (3) и (5), получаем $\rho_{\text{бен}}Vg=\frac{F_0}{3}$, откуда найдём объём каждого шарика $V=\frac{F_0}{3\rho_{\text{бен}}g}=0,24~\text{см}^3$.

Плотности шариков

$$\rho_1 + \rho_2 = \frac{F_0}{gV} = \frac{F_0 3 \rho_{\text{бен}} g}{gF_0} = 3 \rho_{\text{бен}}, \quad (6)$$

с другой стороны, из условия имеем:


$$\frac{\rho_1}{\rho_2} = \frac{4}{3}. (7)$$

Выражая из уравнений (6) и (7) плотности шариков, получим $\rho_1 = \frac{12}{7} \rho_{\text{бен}} \simeq 1,22 \, \text{г/см}^3,$ $\rho_2 = \frac{9}{7} \rho_{\text{бен}} \simeq 0,91 \, \text{г/см}^3.$

Теперь построим график силы натяжения нити T_2 в процессе погружения шариков. Высота слоя бензина $l_6=\frac{V_0}{s}=12,5$ см >l, следовательно, сначала оба шарика погрузятся в бензин, а только затем шарик 2 достигнет границы раздела жидкостей. После погружения шарика 1 в бензин сила натяжения T_1 уменьшится на величину действующей на него выталкивающей силы $\rho_{\text{бен}}Vg=\frac{F_0}{3}$, т.е. общая сила будет $\frac{F_0}{3}$. Плотность второго шарика меньше плотности воды $\rho_2<\rho_{\text{вод}}$, поэтому, когда шарик 2 достигнет границы жидкостей, он будет плавать на этой границе, а крепящаяся к нему нить провиснет — исчезнет T_2 . Сила, действующая на динамометр, будет определяться как

$$T_1 = (\rho_1 - \rho_{\text{бен}})Vg = \left(\frac{12}{7}\rho_{\text{бен}} - \rho_{\text{бен}}\right)\frac{F_0}{3\rho_{\text{бен}}g}g = \frac{5}{21}F_0.$$
 (8)

Полная зависимость силы натяжения от высоты приведена на правом рисунке.

Критерий оценивания		Балл
Указано, что в верхнем слое жидкости будет бензин		2
Рассмотрены условия равновесия шариков (аналоги (1), (2) и (4))		2
Найден объём шариков	$\frac{F_0}{3 ho_{бен}g}$	2
Найдены плотности шариков	$ ho_1 = \frac{12}{7} ho_{\text{6eH}} = 1,22 \text{ г/cm}^3$	2
	$\rho_2 = \frac{9}{7} \rho_{\text{бен}} = 0.91 \text{г/см}^3$	2
Указано, что при погружении нижнего шарика в воду шарик будет плавать и нить провиснет		2
Правильно построен график для силы натяжения		2

Задача 5э. Плотность скрепки (20 баллов)

Определите среднюю плотность канцелярской скрепки с максимально возможной точностью, используя выданное оборудование.

Оборудование: лист писчей бумаги известной плотности формата А4 (2 штуки), линейка деревянная (1 шт), скрепка канцелярская (1 шт), шариковая ручка.

Возможное решение

Для определения плотности материала скрепки необходимо знать массу и объем скрепки. Массу скрепки можно узнать, взвесив ее на рычажных весах, сделанный из линейки, разместив ее, например, на стержне ручки. В качестве гирь можно использовать бумагу, известной плотности ρ , которая дана в граммах на квадратный метр. Скрепку уравновешиваем на весах кусочками бумаги. Измерив площадь бумаги, потребовавшейся для уравновешивания определяем массу бумаги ($m = \rho S$), а значит и массу скрепки.

Определяем объем скрепки. Для этого необходимо распрямить скрепку. Измеряем линейкой длину получившейся скрепки. Диаметр скрепки можно определить или сложив ее в несколько раз, или прокатив расправленную скрепку по линейке, считая обороты.

Масса скрепки составляет примерно 0,4–0,5 г.

Диаметр проволоки скрепки: ~1,33 мм

Длина проволоки скрепки: ~90 мм

Объем: ~125 мм³

Примерная плотность скрепки с полимерным покрытием **3,2–3,9 г/см³** (значения указаны для скрепки **28 мм**)

Вниманию организаторов: в таблице критериев не имеет смысла суммировать все баллы во втором столбце, так как в некоторых критериях есть взаимоисключающие пункты

оценивания (баллы за них не суммируются, а ставится балл пункта, соответствующего решению участника).

Критерий оценивания	вариации решения	Балл
Приведен чертеж (схема) установки и описан определению плотности скрепки	ход эксперимента по	3
Проведено взвешивание скрепки	не менее 3 раз	3
	2 раза	2
	1 pa3	1
Определена масса скрепки с точностью относительно реальной	+/- 0.1 грамма	3
	в большем диапазоне	1
Определен диаметр скрепки или методом рядов (не менее четырех проволочек), или методом прокатывания проволоки по линейке с точностью относительно реальной	+/- 0.1 мм	4
	в большем диапазоне	1
Определен объем скрепки		3
Определена плотность скрепки с точностью относительно реальной	+/- 0.35 г/см ³	4
	в большем диапазоне	1