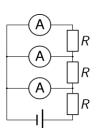

Всероссийская олимпиада школьников по физике

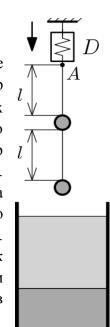
2018-2019 учебный год Муниципальный этап Свердловская область **9 класс**

Задача 1. Квадрокоптер (8 баллов)


Квадрокоптер запрограммирован на облет территории по траектории в форме квадрата, ориентируясь по компасу (летит t секунд на север, затем столько же на восток, юг и т.д.). К сожалению, программист не учел, что на улице дует западный ветер. В результате, пролетев только 3t секунд, квадрокоптер внезапно оказался на точке, откуда он стартовал. Считая, что ветер дул с постоянной скоростью V, найдите скорость квадрокоптера. Во сколько раз сократился его маршрут по сравнению с запрограммированным вариантом?

Задача 2. Лужа(10 баллов)

Весной на солнце вода в луже имеет температуру 10^{-0} С и нагревается на 1^{-0} С в час. Сосулька над лужей начала таять, с нее вниз полетели холодные капли температурой 0^{-0} С. Когда в лужу начало попадать n капель в час, нагрев воды в луже остановился. Определите, во сколько раз масса воды в луже больше массы средней капли. Насколько остынет вода в луже за час, если капли будут капать в полтора раза чаще? Считать, что температура воды в луже выравнивается быстро. Масса воды в луже постоянна, а лишняя вода стекает в виде ручейка.


Задача 3. Амперметры (8 баллов)

В электрической схеме присутствуют три одинаковых амперметра и три резистора одинакового номинала, который неизвестен. Показания крайнего амперметра I_1 , следующего $I_2 = 2I_1$. Укажите токи на схеме. Во сколько раз показания последнего амперметра (I_3) будут отличаться от I_1 ?

Задача 4. Два шара (14 баллов)

В сосуд с постоянной площадью сечения $S=80~{\rm cm}^2$ налиты две несмешивающиеся жидкости: 1 литр воды ($\rho_{\rm Bog}=1,0~{\rm г/cm}^3$) и 1 литр бензина ($\rho_{\rm 6eH}=0,71~{\rm г/cm}^3$). Над сосудом на подвесе висят два маленьких шарика одинакового диаметра, причем плотности верхнего и нижнего шариков относятся как 4:3. В основании подвеса установлен динамометр D, показывающий силу натяжения F в прикрепленной к нему нити. Шарики начинают медленно погружать в жидкость. До момента погружения динамометр показывал значение 5мH, а после полного погружения первого шарика его показания уменьшились на треть. Определите объём и плотности материалов шариков. Постройте график зависимости показаний динамометра от высоты точки A над уровнем жидкости до момента её касания поверхности. Длина обоих отрезков нити $l=10~{\rm cm}$. Ускорение свободного падения: $g=9,8~{\rm m/c}^2$.

Задача 5э. Плотность скрепки (20 баллов)

Определите среднюю плотность канцелярской скрепки с максимально возможной точностью, используя выданное оборудование.

<u>Оборудование:</u> лист писчей бумаги известной плотности формата A4 (2 штуки), линейка деревянная (1 шт), скрепка канцелярская (1 шт), шариковая ручка.