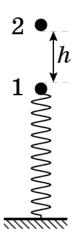
11 класс.

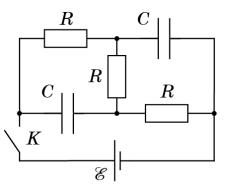
Задача 1. Двойная комета. (Слободянин В.). В 2016 году с помощью космического телескопа Hubble астрономы обнаружили в поясе астероидов между орбитами Марса и Юпитера необычный объект 288Р: два астероида примерно одинаковой массы на орбите друг у друга, и при этом обладающие свойствами комет (яркое ядро и длинный хвост).

Расстояние между центрами астероидов

L=100 км, период их обращения друг относительно друга T=3 суток, средняя плотность вещества из которого состоят астероиды $\rho=0.6$ г·см⁻³. Определите диаметр D каждого из астероидов, считая, что астероиды — это два шара одинаковой массы.


Примечание. Гравитационная постоянная $G \approx 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2 \text{ кг}^{-2}$.

Задача 2. Два шарика и пружина. (Иоголевич И.). На легкой пружине закреплен небольшой по размерам шарик, как показано на рисунке. Другой конец пружины прикреплен к горизонтальному столу.

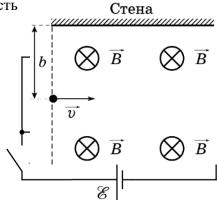

С высоты h без начальной скорости отпускают второй точно такой же шарик.

Известно, что после первого центрального упругого удара, следующее столкновение шаров происходит, когда первый шар оказывается в нижней точке своей траектории.

Чему равно время между первым и вторым столкновениями шаров?

- Задача 3. RC-мост. (Иоголевич И.). Из трех одинаковых резисторов сопротивлением R и двух одинаковых конденсаторов электрической ёмкостью C собрана электрическая цепь (мостовая схема) и через ключ подключена к идеальной батарейке. Первоначально конденсаторы не заряжены.
- 1) Определите силу тока и его направление в каждом из резисторов сразу после замыкания ключа. Сделайте поясняющий рисунок N_2 1.

- 2) Определите силу тока и его направление в каждом из резисторов по истечение продолжительного времени, прошедшего после замыкания ключа. Сделайте поясняющий рисунок \mathbb{N}_2 .
- 3) Какие заряды (укажите величину и полярность) установятся на конденсаторах спустя длительное время после замыкания ключа? Знаки зарядов пластин конденсатора укажите на рис. № 2.


Задание можно уносить с собой!!!

Задача 4. Трубка Торричелли. (Кармазин С.). Летом в горной местности с резко континентальным климатом экспериментатор Глюк решил повторить опыт Торричелли и соорудил водяной барометр. Первоначально он удивился, обнаружив существенные изменения в показаниях барометра в течение дня, несмотря на то, что находящийся рядом барометр портативной метеостанции постоянно показывал давление $p_0 = 700$ мм.рт.ст. Но потом он понял, что причина этих изменений связана с тем, что трубка Торричелли расположена на солнечной стороне горного склона и показания расположенного рядом с ней термометра изменяются в течение суток от 0°C до 40°C. Зависимость высоты столба воды в трубке h от температуры t °C, полученная в эксперименте, приведена в таблице. Используя эти данные, определите плотность насыщенных водяных паров $\rho_{\rm HII}$ для 9 различных температур, заполните пустой столбец таблицы и постройте график зависимости $\rho_{\rm HII}$ ($t^{\rm o}$ C). Плотность ртути $\rho_{pT} = 13~600 \text{ кг/м}^3$.

№	t, °C	h,(M)	$ ho_{\scriptscriptstyle ext{HII}}$
1	0	9,46	
2	5	9,43	
3	10	9,40	
4	15	9,35	
5	20	9,29	
6	25	9,20	
7	30	9,10	
8	35	8,96	
9	40	8,78	

Задача 5. В поле. В область однородного магнитного поля (правее пунктирной линии) с индукцией B влетает со скоростью υ положительно заряженный шарик с удельным зарядом

 $\gamma = \frac{q}{m}$. На расстоянии b от места входа шарика в область магнитного поля расположена непроводящая стенка. Направление скорости шарика параллельно стенке и перпендикулярно линиям магнитной индукции (рис.). Найдите, при каких значениях b шарик не вылетит обратно в область, где нет магнитного поля. Удар шарика о стену считать абсолютно упругим. Силами сопротивления и силой тяжести пренебречь.

