МУНИЦИПАЛЬНЫЙ ЭТАП ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ФИЗИКЕ

2019/2020 УЧЕБНЫЙ ГОД

8 КЛАСС (решения)

1. (10 баллов) На полный обгон теплоходом каравана барж потребовалось $t_1 = 2$ мин, а катер обгонял теплоход за время $t_2 = 1$ мин. Какое время t_3 потребуется катеру на обгон каравана барж?

Известно, что катер совсем маленький, а длина каравана в три раза больше длины теплохода. Все суда идут равномерно.

Ответ: 1 минута.

Решение. Пусть L- длина теплохода, $\upsilon-$ скорость теплохода, u- скорость каравана барж, V- скорость катера. По условию задачи теплоход обгонял караван барж в течение времени t_1 , следовательно, $(\upsilon-u)$ $t_1=4L$, где 4L- суммарная длина теплохода и каравана. Катер же обгонял теплоход за время t_2 , значит, $(V-\upsilon)$ $t_2=L$.

Из этих двух уравнений найдём скорость сближения катера и каравана:

$$V - u = \frac{L}{t_2} + \frac{4L}{t_1}.$$

Тогда катеру потребуется на обгон каравана барж время t_3 , равное:

$$t_3 = \frac{3L}{V-u} = \frac{3L}{\frac{L}{t_2} + \frac{4L}{t_1}} = \frac{3t_1t_2}{t_1 + 4t_2} = 1$$
 мин.

2. (10 баллов) «Но как Вы догадались, Холмс, что это принадлежит полковнику Морану?», – воскликнул удивлённый Ватсон, разглядывая, как Холмс достаёт из сосуда с жидкостью плавающий кубик. «Элементарно, Ватсон!» – опять произнёс Шерлок Холмс, подытоживая очередное запутанное дело. «Вот главная улика. Этот кубик весьма лёгок, а его ребро составляет треть фута. Вы заметили, Ватсон, на какую глубину был погружён кубик в жидкость? Нет? Это самое важное, Ватсон! Если не учитывать атмосферное давление, то можно получить очень интересный результат: сила давления жидкости на дно этого плавающего кубика в 5 раз больше, чем средняя сила давления этой жидкости на любую из его боковых стенок. Такой кубик мог быть только у одного человека – человека, вернувшегося из Индии». Определите, на какую глубину погружался в жидкость таинственный кубик. Ответ выразите в сантиметрах.

Для справки: 1 фут = 0.3 м.

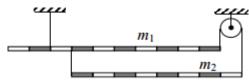
Ответ: 4 см.

Решение. Пусть глубина погружения кубика h . Сила гидростатического давления на глубине h равна $p=\rho \cdot g \cdot h + p_A$, где ρ — плотность жидкости, p_A —

атмосферное давление. Так как атмосферное давление не учитывается, то сила давления на дно плавающего кубика будет равна $F_h=p\cdot S=p\cdot a^2=\rho\cdot g\cdot h\cdot a^2$, а средняя сила давления на любую из боковых стенок плавающего кубика, дно которого погружено на глубину h, равна $F_{no}=(F_0+F_h)/2=(0+F_h)/2=F_h/2=(h\cdot a\cdot \rho\cdot g\cdot h)/2$.

Согласно условию задачи $F_h/F_{no}=5$, т.е. $(\rho \cdot g \cdot h \cdot a^2)/((h \cdot a \cdot \rho \cdot g \cdot h)/2)=2a/h=5$, или $h=(2 \cdot a)/5=(2 \cdot 0,1)/5=0,04$ м = 4 см.

3. (10 баллов) В калориметре смешали десять порций воды. Первая порция имела массу m = 1 г и температуру t = 1 °C, вторая – массу 2m и температуру 2t, третья – 3m и 3t, и так далее, а десятая – массу 10m и температуру 10t. Определите установившуюся температуру смеси. Потерями теплоты пренебречь.


Otbet: $t_x = 7 \, ^{\circ}\text{C}$

Решение. Так как по условию система теплоизолирована, воспользуемся законом сохранения энергии. Определим количество теплоты, которое выделится при остывании всех порций воды до $0\,^{\circ}$ C.

$$Q = c \cdot m \cdot t + 2m \cdot c \cdot 2t + \dots + 10m \cdot c \cdot 10t = 385 c \cdot m \cdot t.$$

Это количество теплоты пустим на нагревание всей воды, имеющей массу m + 2m + ... + 10m = 55m от 0 °C до искомой температуры t_x : $Q = 55c \cdot m \cdot t_x = 385 \text{ c·} m \cdot t$, откуда $t_x = 7 \text{ °C}$.

4. (10 баллов) Система, состоящая из двух однородных стержней разной плотности, находится в равновесии. Масса верхнего стержня $m_1 = 1,4$ кг. Трение пренебрежимо мало.

Определите, при какой массе m_2 нижнего стержня возможно такое равновесие.

Ответ: 1,2 кг.

Решение. Так как нижний стержень подвешен за концы, находится в равновесии и его центр тяжести располагается посередине, то силы реакции нитей, действующие на него, одинаковы и равны по модулю $m_2g/2$. Запишем уравнение моментов для верхнего стержня относительно точки крепления левой (верхней) нити:

$$\frac{m_2g}{2} \cdot 1 + m_1g \cdot 3 - \frac{m_2g}{2} \cdot 8 = 0 \implies m_2 = \frac{6}{7}m_1 = 1,2$$
 кг.

Mаксимальное количество баллов -40.