11 класс

Задача 1

Возможное решение

Напряжение на резисторе с сопротивлением R_2 будет равно $U_0 - U_1$ (1)

мощность на этом резисторе

$$N_2 = (U_0 - U)^2 / R_2 = (16/25) U_0^2 / R_2$$
 (2)

Напряжение на резистор с сопротивлением R_1 равно U (3)

Мощность на этом резисторе $N_1 = U^2/R_1 = (1/25) U_0^2/R_1$ (4)

Тогда из (2) и (4):

$$N_1/N_2 = (1/16) R_2/R_1 = 5/16 \approx 0.31$$
 (5)

т.е. N₁ составляет приблизительно 31% от N₂

Критерии оценивания

Задача 2

Возможное решение

Пусть длина трассы (окружности) равна L. Тогда скорость первого автомобиля равна

$$V_1 = L/T_1$$
 (1)

Скорость второго - $V_2 = L/T_2$ (2)

Так как автомобили движутся в одном направлении, то скорость удаления первого автомобиля от второго будет равна

$$V_{yganehug} = V_1 - V_2 = L/T_1 - L/T_2 = L/(T_2 - T_1)/T_1T_2$$
 (3)

Тогда искомое время будет равно

а) для достижения максимального расстояния между автомобилями первый автомобиль должен после старта сделать на четверть оборота больше, чем второй). Это произойдет через время

$$t_1 = (L/4)/V_{yganehug} = (1/4)T_1T_2/(T_2 - T_1) = 4 \text{ Muh } 22,5 \text{ c}$$
 (4)

б) для достижения минимального расстояния между автомобилями первый автомобиль должен <u>после старта</u> догнать второй, для этого ему надо сделать на три четверти оборота больше, чем второй). Это произойдет через время

$$t_2 = (3L/4)/V_{V,Q,Q,Q,H,U,S} = (3/4)T_1T_2/(T_2 - T_1) = 13 \text{ Muh } 7,5 \text{ c}$$
 (5)

Критерии оценивания

Написана связь между скоростями автомобилей и периодами обращения (1), (2)........... 1 балл

Получены правильные числовые ответы......1 балл

Задача 3

Возможное решение

По закону сохранения импульса

$$m_1V + 0 = (m_1 + m_2)V/3$$
 (1)

Откуда $m_2 = 2m_1$ (2)

По закону сохранения энергии

$$m_1V^2/2 = (m_1 + m_2)(V/3)^2/2 + Q$$
 (3)

где Q – количество механической энергии, перешедшей в тепло при ударе.

Откуда, с учетом (2), получим

$$Q = (2/3) m_1 V^2 / 2$$
 (4)

т.е. 67% первоначальной кинетической энергии движущегося тела в результате абсолютно неупругого удара перешло в тепло.

Критерии оценивания

Написан закон сохранения импульса (1)	3 балла
Найдено соотношение масс тел (2)	1 балл
Написан закон сохранения энергии (3)	3 балла
Решена система уравнений и получен правильный ответ (4)	3 балл

Задача 4

Возможное решение

Пусть сторона квадрата равна а, диагональ квадрата — $2^{1/2}$ а, первоначальный заряд каждого шарика равен q. Тогда сила кулоновского взаимодействия была равна

$$F_1 = kq^2/(2a^2)$$
 (1)

k — электрическая постоянная в законе Кулона. Пусть с одного шарика на другой перенесли x — часть исходного заряда. Тогда после перемещения заряда из В в С сила взаимодействия будет равна

$$F_2 = kq^2 (1 - x)(1 + x)/a^2$$
 (2)

Приравнивая (1) и (2), получим:

$$x = 2^{1/2}/2 \approx 0.71 \tag{3}$$

т.е. с одного шарика на другой перенесли приблизительно 71% электрического заряда.

Критерии оценивания

Задача 5

Возможное решение

Принимая во внимание большую массу воды при 0° С и малые массы кусочка льда и стального шарика, тепловое равновесие наступит при температуре $t_0 = 0^{\circ}$ С. Для нагревания льда от t_1 до 0° С потребуется тепла

$$Q_1 = C_{\text{льда}} m(t_o - t_1)$$
 (1)

где m — масса кусочка льда (лед нагреется до 0°С, но таять не будет !). Так как температура воды не изменилась, то это тепло первоначальный лед получит вследствие остывания стального шарика до 0°С и кристаллизации некоторого количества Δ m воды при 0°С и появления такой же массы Δ m льда :

$$Q_2 = C_c m(t_2 - t_o) + \lambda \Delta m \qquad (2)$$

где C_c = 460 Дж/(кг·град) - удельная теплоемкость стали, λ = 330 кДж/кг — удельная теплота плавления льда (или удельная теплота кристаллизации воды). Уравнение теплового баланса

$$C_{\text{льда}} m(t_0 - t_1) = C_c m(t_2 - t_0) + \lambda \Delta m \tag{3}$$

Откуда

$$(t_o - t_1) = [\lambda \Delta m/m + C_c(t_2 - t_o)]/C_{\Lambda L D A} \approx 14,4^{\circ}$$

т.е. первоначальная температура кусочка льда была минус 14,4°C. (4)

Критерии оценивания

Максимальное количество баллов за решение задач – 50 баллов. (Решение каждой задачи оценивается целым числом баллов от 0 до 10).