
8 класс

Задача №1.

Коля и Петя решили измерить плотность шариков для игры в бильярд. Для этого они в воздухе на рычаге один левый шарик уравновесили тремя шариками справа. Когда правый край рычага они погрузили в воду, то чтобы

уравновесить левый шарик нужно уже четыре шарика справа. Все шарики одинаковы, рычаг невесомый. Какую плотность шариков получили мальчики? Плотность воды 1000 кг/м^3 .

Возможное решение

Запишем условие равновесия рычага для первого случая, обозначив массу шарика за m, длину длинного плеча рычага за l_1 , а длину короткого плеча за l_2 .

Тогда $mgl_1 = 3mgl_2$. (1)

Отсюда получим, что $l_1 = 3l_2$. (2)

Во втором случае на правые шарики будет действовать сила Архимеда. Так как шарики одинаковые и полностью погружены в воду, то на каждый шарик будет действовать сила Архимеда

$$F_A = \rho_0 gV$$
, где $\rho_0 = 1000 \ \kappa c/m^3 -$ плотность воды. (3)

Тогда условие равновесия рычага для второго случая запишется в следующем виде:

 $mgl_1 = 4(mg - F_A)l_2.$ (4)

 $mgl_1 = 4(mg - \rho_0 gV)l_2$.

Выразим массу шарика через его плотность и объем:

 $m = \rho V$, (5)

подставим в предыдущее выражение:

 $\rho V g l_1 = 4(\rho V g - \rho_0 g V) l_2,$

 $\rho l_1 = 4(\rho - \rho_0)l_2,$

 $3\rho l_2 = 4\rho l_2 - 4\rho_0 l_2,$

откуда получим, что

 $ho = 4
ho_0 = 4000 \ \kappa c/m^3$.

Критерии оценивания

Записано условие равновесия рычага для первого случая (1)	2 балла
Получена связь между длинами плеч (2)	1 балл
Указано, что на шарики будет действовать сила Архимеда (3)	1 балл
Записано условие равновесия рычага для второго случая (4)	2 балла

Использована связь между массой и объемом (5)	1 балл
Верные математические преобразования и численный ответ	3 балла

Примечание: В случае если участник допустил ошибку в преобразованиях, которая привела к неверному численному ответу, баллы за последний этап решения (преобразования) ставятся пропорционально количеству правильно выполненных действий.

Задача №2

Кошка Лиза бежала по мосту. Когда она пересекла 3/8 длины моста, она услышала сигнал догоняющего её велосипедиста. Если кошка побежит назад, то встретится с велосипедистом у одного конца моста, а если побежит вперёд, то встретится с ним у другого конца моста. Во сколько раз скорость велосипедиста больше скорости кошки?

Возможное решение

Пусть S расстояние автомобиля до моста,

а $L = \frac{3}{8}l$ - расстояние пройденное кошкой от начала моста,

тогда $\frac{5}{8}l$ осталось до конца моста,

 V_1 – скорость велосипедиста, а V_2 - скорость кошки.

Составим системы:

Кошка бежит к началу моста $S=V_1t_1,\,L=V_2t_1$

и подставляя данные получим $\frac{8S}{3l} = \frac{V_1}{V_2}l$ (1). (2балла)

Кошка бежит к концу моста $S+l=V_1t_2$ и $\frac{5}{8}l=V_2t_2$, (2балла)

подставляя данные получим $\frac{8(S+l)}{5l} = \frac{V_1}{V_2}$ (2). (2балла)

Решая уравнения (1) и (2) получим $\frac{V_1}{V_2}$ = 4 (2балла)

Критерии оценивания

Найдено расстояние от кошки до конца моста	1 балл
Составлены уравнения движения велосипеда и кошки к началу моста	2 балла
Записано отношение уравнений	1 балл
Составлены уравнения движения велосипеда и кошки к концу моста	2 балла
Записано отношение уравнений	1 балл
Решены совместно отношения уравнений	3балла

Задача №3

Туристы Глюк и Баг на привале решили в маленьком котелке нагреть до кипения порцию речной воды. Для этого они сожгли $m_1 = 0,60$ кг дров. Затем они котелок остудили и налили в него двойную порцию воды. Теперь, чтобы довести её до кипения, пришлось сжечь $m_2 = 0,85$ кг дров. Какая масса дров m_3 потребуется для того, чтобы нагреть до кипения двойную порцию воды в большом котле, масса которого в 4 раза больше массы маленького? Считайте, что 30% теплоты от сгоревших дров идёт на нагревание воды и котлов при любой температуре воды

Возможное решение

Запишем уравнение теплового баланса для первого случая:

$$0.3qm_1 = (C_K + C_B)\Delta t$$

Здесь q - удельная теплота сгорания дров, C_K - теплоёмкость котелка, C_B - теплоёмкость порции воды, Δt - разность между температурой кипения и температурой речной воды.

Во втором случае теплоёмкость воды будет в 2 раза больше, так как теплоёмкость пропорциональна массе вещества:

$$0.3qm_2 = (C_K + 2C_B)\Delta t$$

У большого котла теплоёмкость больше в 4 раза.

Тогда:

$$0.3qm_3 = (4C_K + 2C_B)\Delta t$$

Решая систему, находим, что

$$m_3 = 6m_1 + 2m_2 = 1.9\kappa \epsilon$$

Критерии оценивания

Учтено, что часть тепла от сгоревших дров идёт на нагревание котелка, и правильно записано уравнение теплового баланса для первого случая	2 балла
Учтено, что теплоемкость воды увеличивается в 2 раза, и правильно записано уравнение теплового баланса для второго случая	3 балла
Учтено, что теплоемкость большого котла в 4 раза больше теплоемкости котелка, и правильно записано уравнение теплового баланса для третьего случая	3 балла

Задача №4

Какую массу имеет деревянный кубик со стороной L=10 см, если при переносе его из масла плотностью 900 кг/м³ в воду плотностью 1000 кг/м³ глубина погружения бруска уменьшилась на H=5 мм?

Возможное решение

Так как брусок плавает, то его вес равен выталкивающей силе, действующей со стороны воды:

$$P = mg = \rho_B gV(1)$$
, где $V -$ объем воды, вытесненной бруском.

Но брусок плавал и в масле, поэтому вес вытесненной воды равен весу вытесненного масла. Так как $\rho_{\scriptscriptstyle B} \rangle \rho_{\scriptscriptstyle M}$, то объем масла, вытесненного бруском, будет на L^2H больше, чем объем вытесненной им воды. Поэтому можно записать

$$\rho_{\scriptscriptstyle B} g V = \rho_{\scriptscriptstyle M} g (V + L^2 H)$$
 откуда для V получим
$$V = \frac{\rho_{\scriptscriptstyle M} L^2 H}{\rho_{\scriptscriptstyle B} - \rho_{\scriptscriptstyle M}}$$

Подставляя полученные выражения в (1) и сократив на g, найдем

$$m = \rho_B \frac{\rho_M L^2 H}{\rho_B - \rho_M} = 450\varepsilon$$

Критерии оценивания

Записаны условия равновесия для плавания бруска в воде и в масле	2 балла
Указано соотношение между объемами погруженных частей бруска в масле и в воде	2 балла
Получено выражение для объема воды, вытесненной бруском	3 балла
Получено выражение для массы бруска	2 балла
Найдено значение массы бруска	1 балл