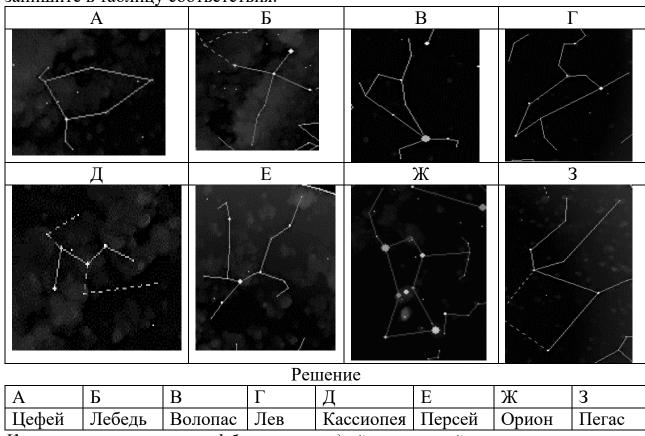
Муниципальный этап Всероссийской олимпиады школьников по астрономии 7 – 8 классы

Возможные решения и критерии оценивания


1. Сопоставьте созвездия и условия их наблюдения на вечернем небе в г.

Смоленске. Составьте таблицу соответствия

Название созвездия				Условия наблюдения на ночном небе			
				в г. Смоленске			
А) Орёл				1) Является незаходящим			
Б) Кассиопея				2) Наблюдается только зимой			
В) Орион				3) Наблюдается только летом			
Г) Лира				4) Никогда не наблюдается			
Д) Малая Медведица							
Е) Компас							
Ж)Лебедь							
3) Телец							
Решение							
A	Б	В	Γ	Д	Е	Ж	3
A	Б	В	Г	Д	Е	Ж	3

Критерии оценивания: по 1 баллу за каждый правильный ответ.

2. Определите названия созвездий, изображённых на каждой картинке. Названия запишите в таблицу соответствия.

Критерии оценивания: по 1 баллу за каждый правильный ответ.

3. Звезды образуют различные связанные системы (галактики, шаровые скопления, рассеянные скопления). Имеется звездное скопление, линейный размер которого равен $D_{c\kappa}=10^{14}$ км. Средняя плотность вещества в скопления $\rho_{c\kappa}=6\cdot10^{-22} \text{г/cm}^3$. Оказалось, что все звезды этого скопления являются «близнецами»

нашего Солнца. Оцените количество звезд в скоплении. Средняя плотность Солнца $\rho_c=1,4$ г/см³, радиус Солнца равен $R_c=7\cdot10^5$ км. Объем шара можно вычислить по формуле $V{=}4,2\cdot R^3$..

Возможное решение

Если в скоплении N звёзд типа Солнца, то массу скопления можно найти:

$$M = N\rho_c \cdot 4, 2R_c^3. \tag{+2 балла}$$

С другой стороны, зная среднюю плотность скопления, можно найти его массу как:

$$M = \rho_{c\kappa} \cdot 4.2 \cdot R_{c\kappa}^{3}, \qquad (+2 \, \text{балла})$$

где $\rho_{c\kappa}$ – плотность скопления, $R_{c\kappa}$ – его средний радиус, который можно считать равным половине линейного размера скопления. (+1 балл)

Тогда

$$N = \frac{\rho_{\text{ск}}}{\rho_{\text{c}}} \cdot \left(\frac{R_{\text{ск}}}{R_{\text{c}}}\right)^3 = 156$$
 (3 балла)

4. У какой из планет: Марса или Нептуна – будет больше отличаться минимальная и максимальная яркость при наблюдении с Земли? Ответ поясните.

Возможное решение.

Так как обе планеты — внешние, то они практически всегда наблюдаются в полной фазе. Таким образом, их изменение яркости связано с изменением расстояния до Земли от минимально возможного до максимально возможного. $(+2\ балла)$

Марс находится на расстоянии $\approx 1,5$ а.е. от Солнца, и минимальное расстояние от него до Земли (в противостоянии) всего в 4 раза меньше максимального (в соединении). (+2 балла)

Нептун находится на значительном расстоянии от Солнца, и расстояние между ним и Землёй не будет сильно меняться при движении планет. $(+2 \ балла)$

Значит, звёздная величина Марса будет значительно больше изменяться при его различных конфигурациях, чем звёздная величина Нептуна. $(+1 \ балл)$

Стоит отметить, что фаза Марса при его движении всё-таки меняется: минимально возможная фаза составляет 0.85. Учёт этого фактора только усиливает полученный выше ответ. $(+1\ балл)$

Альтернативные способы решения задач, не учтенные составителями задач в рекомендациях, при условии их правильности и корректности также оцениваются в полной мере. Ниже представлена общая схема оценивания решений.

- 0 баллов решение отсутствует или абсолютно некорректно;
- 1 балл правильно угаданный бинарный ответ (да/нет) без обоснования;
- 1-2 балл сделана попытка решения, не давшая результата;
- 2-3 балла правильно угадан сложный ответ, но его обоснование отсутствует или ошибочно;
- 4-6 баллов частично решенная задача;
- 6-7 баллов полностью решенная задача с более или менее значительными недочетами;
- 8 баллов полностью решенная задача.

Выставление премиальных баллов (оценка за задание более 8 баллов) не допускается.