Муниципальный этап Всероссийской олимпиады школьников по астрономии 2018/19 учебный год

10 класс

Дорогой друг! Желаем успеха! Залания

№ 1. Черные дыры разрывают звезды. Оцените массу М черной дыры (ЧД), гравитация которой будет разрывать звезды вблизи ее горизонта событий. Данные о разрываемых звездах: $M_{\rm 3B} = 2 \cdot 10^{30}$ кг; $R_{\rm 3B} = 7 \cdot 10^8$ м. Массу ЧД выразите в единицах солнечной массы. Гравитационная постоянная: $G = 6,67 \cdot 10^{-11} \; (\text{H} \cdot \text{m}^2/\text{kr}^2)$. Масса Солнца: $M_{\rm \Theta} = 2 \cdot 10^{30} \; \text{кг}$. Скорость света в вакууме: $c = 3 \cdot 10^8 \; \text{м/c}$.

№2. Предельная масса звезды с термоядерным источником энергии. На основе общего соот-

ношения «светимость-масса» $\frac{L}{L_{\scriptscriptstyle \square}} = \left(\frac{M}{M_{\scriptscriptstyle \square}}\right)^n$ выясните, какой может быть масса звезды с термо-

ядерным источником энергии при n=3. Критическая (эддингтоновская) светимость звезды определяется формулой

$$L_{\rm KP}=3\cdot 10^4 L_{\rm L}\left(rac{M}{M_{\odot}}
ight)$$
 эрг/с, где M - масса звезды.

№3.Предел Оппенгеймера-Волкова (1939г). Нейтронная звезда удерживается от гравитационного коллапса давлением вырожденного нейтронного газа. В предельном (ультрарелятивистском) случае давление P_n нейтронного газа можно оценить по формуле $P_n \approx \hbar c n^{4/3}$, где $\hbar = 1,05 \cdot 10^{-34} \, \text{Джc} \cdot c$ - постоянная Планка; $c = 3,0 \cdot 10^8 \, \text{м/c}$ - скорость света в вакууме; n - концентрация нейтронов. Оцените максимальную массу нейтронной звезды (в единицах солнечной массы $M = 2,0 \cdot 10^{30} \, \text{кг}$). Масса нейтрона $m_n \approx 1,7 \cdot 10^{-27} \, \text{кг}$. Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \, (H \text{M}^2 \, / \, \text{кг}^2)$.

№ 4. Вокруг Луны.

Космический корабль движется вокруг Луны по эллиптической орбите с максимальным удалением от поверхности Луны (в апоселении) $h_A = 312$ км и минимальным удалением (периселении) $h_P = 112$ км. 1). На сколько надо нужно изменить скорость корабля, чтобы перевести его на круговую орбиту с высотой полета $h_P = 112$ км над поверхностью Луны, если двигатель включался на короткое время, когда корабль находился в периселении? Данные о Луне: $M = 7,35 \cdot 10^{22}$ кг; R = 1740 км. 2). Сколько топлива будет израсходовано в таком маневре? Масса корабля на круговой орбите $m_0 = 20$ т. Скорость истечения газа из сопла двигателя равна u = 4 км/с относительно корабля.

№ 5.Покрытие звезд Луной. Во время астрономо-геодезических работ, проводившихся в Туркестане, капитан Генерального штаба Гедеонов наблюдал 29 сентября 1884 г. в урочище Чарбек покрытия звезд 6992 и β Саргісогпі в 22^h 22^m 47^s ,48 и 22^h 29^m 10^s ,16 соответственно. Одновременно те же покрытия были наблюдены подполковником Залесским в Ташкентской обсерватории в

Муниципальный этап Всероссийской олимпиады школьников по астрономии, 2018/19 уч. год Задания

21^h55^m19^s,11 и 22^h1^m44^s,43 соответственно. Определите разницу долгот между этими пунктами. Выразите ее в градусной мере. Какой из них находится западнее, а какой восточнее?

№ 6. Гонки карликовых планет. Период обращения карликовой планеты Цереры составляет 4,6 лет, а Титана -16 дней. Какая из планет пройдет большее расстояние по своей орбите за одни земные сутки? Массу Сатурна считать равной $5,68 * 10^{26} \kappa z$.