ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО астрономии МУНИЦИПАЛЬНЫЙ ЭТАП

9 класс

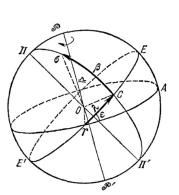
Время выполнения

3 астрономических часа

Задание 1.

На рисунке обозначены точки, указаны линии и круги. «Прочитайте» рисунок:

- 1. Укажите название указанной на рисунке линии PP'. Что показывает направление стрелки вокруг данной оси?
- 2. Перечислите названия всех указанных на рисунке кругов.
- 3. Дайте название сфере, на которую нанесены все приведенные точки.


Возможное решение задания № 1.

- 1. *PP'* ось мира. Направление стрелки вокруг данной оси показывает направление вращения всей сферы вокруг оси мира, которое можно обнаружить, наблюдая движение светил на небе.
- 2. Круг PEAP' небесный меридиан; круг $\bigvee A = \bigvee$ небесный экватор, круг EE' эклиптика.
- 3. Сфера носит название небесной сферы.
- 4. Точки, обозначенные Υ и Ω , соответствуют точкам весеннего и осеннего равноденствия, соответственно, 20-21 марта и 22-23 сентября. В эти дни, как в Архангельске, так и в других городах, продолжительность дня и ночи одинаковы и составляют 12 часов.

Задание 2. Ниже приведен перечень названий естественных и искусственных объектов:

Плутон, Скульптор, Маринер, Секстант, Лисичка, туманность Андромеды, Викинг, Церера, Квавар, Салют, Большое Магелланово Облако, Антарес, Альдебаран, М 31, Вега.

1. Объедините их в группы. Дайте название каждой из групп.

2. Название какого из объектов приведено дважды? Есть ли еще какиелибо его обозначения?

Возможное решение задания № 2.

Группы:

- **Плутон, Квавар, Церера** карликовые планеты Солнечной системы; среди характеристик: форма, близкая к сферической, большинство карликовых планет находятся в занептунной области, обращаются вокруг Солнца, не являются спутниками планет, могут иметь собственные спутники, не способны расчистить окрестности своей орбиты, обладая недостаточной массой.
- **Скульптор, Секстант, Лисичка** созвездия; среди характеристик: включение всех объектов звездного неба, которые оказываются в границах данных созвездий, отсутствие ярких звезд (наиболее яркие имеют пятую звездную величину), имеющих собственные названия, при этом именно в созвездии Лисички был обнаружен первый пульсар.
- **Маринер, Викинг, Салют** космические аппараты и станции, направленные для исследования космического пространства; космические аппараты выполняли уникальные исследования. Так, «Маринер-4» осуществил фотографирование Марса с близкого расстояния, «Маринер-10» получил первые изображения Меркурия с близкого расстояния «Салют» первая орбитальная научная станция, запуск которой осуществил СССР, «Викинг-1» начал научные исследования на поверхности Марса.
- **Антарес, Альдебаран, Вега** яркие звезды в созвездиях соответственно Скорпиона, Тельца, Лиры.
- Туманность Андромеды, Большое Магелланово Облако, M31 галактики.

Туманность Андромеды и М31 — один и тот же объект, второе из приведенных названий связано с внесением ее в каталог Мессье еще в XIX веке, когда природа галактик была неизвестна. Галактика имеет еще одно обозначение, связанное с внесением в «Новый общий каталог», который содержит более 13 тысяч галактик (она включена как NGC224).

Задание 3. В исламском лунном календаре год состоит из 12 лунных месяцев, половина из которых состоит из 29 дней, половина — из 30 дней. За 30 лет в календарь вставляется 11 високосных дней. Определите, за какой промежуток времени в лунном календаре «набежит» лишний год по сравнению с григорианским календарем.

Возможное решение задания № 3.

Лунный год T_L в исламском календаре составляет 12 лунных месяцев по 29.5 дней, то есть 354 дня, плюс еще (11/30) дней за счет добавления 11 високосных суток за 30 лет. Получившееся значение (354.3667 дней) практически совпадает с продолжительностью 12 синодических лунных

периодов. Но эта величина на 10.8758 дней меньше продолжительности года по григорианскому календарю $T_{\rm G}$. Предположим, что за N григорианских лет прошло $(N\!\!+\!1)$ лет по лунному календарю. Тогда

$$N \cdot T_G = (N+1) \cdot T_L; N = \frac{T_L}{T_G - T_L} = 32.58.$$

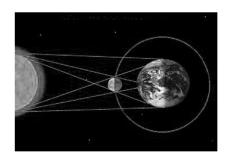
В итоге разница между исламским лунным и григорианским календарем составит целый год попрошествии 32.58 лет по григорианскому календарю или, то же самое, 33.58 лет по лунному календарю.

Задание 4. Небольшая планета обращается вокруг центральной звезды по круговой орбите. На каждом обороте планеты в одной и той же точке ее орбиты она тесно сближается с одной и той же кометой, которая в этот момент проходит точку апоцентра своей орбиты и располагается на небе планеты в 90° от центральной звезды. Определите эксцентриситет орбиты кометы. Орбитальные периоды планеты и кометы различаются, взаимодействием планеты и кометы пренебречь.

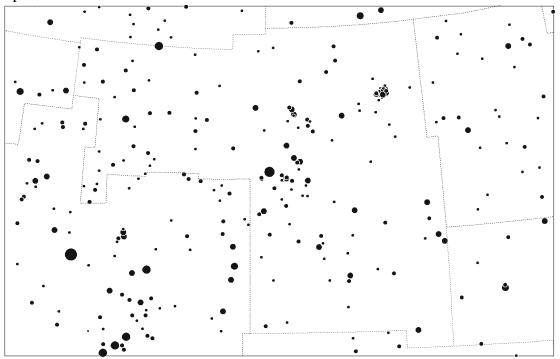
Возможное решение задания № 4.

Обозначим орбитальный период планеты через Т. По завершению одного оборота планета возвращается в ту же точку своей орбиты. Сближения с кометой происходят строго через время T, значит, комета через этот период также возвращается в ту же точку пространства. Следовательно, комета за это время завершает целое число n оборотов вокруг звезды, и ее орбитальный период равен T/n. По условию задачи, орбитальные периоды различаются, то есть n > 1. В момент сближения комета находится рядом с планетой и видна на ее небе в 90° от центральной звезды. Следовательно, ее расстояние от звезды в пространстве практически совпадает с радиусом орбиты планеты R. Это же расстояние равно апоцентрическому расстоянию кометы? тогда $R = a \ (1+e)$. По III закону Кеплера большая полуось орбиты кометы равна $a = R \cdot (1/n)^{2/3}$. Апоцентрическое расстояние кометы составляет $R = a(1+e) = R \cdot (1/n)^{2/3} (1+e).$

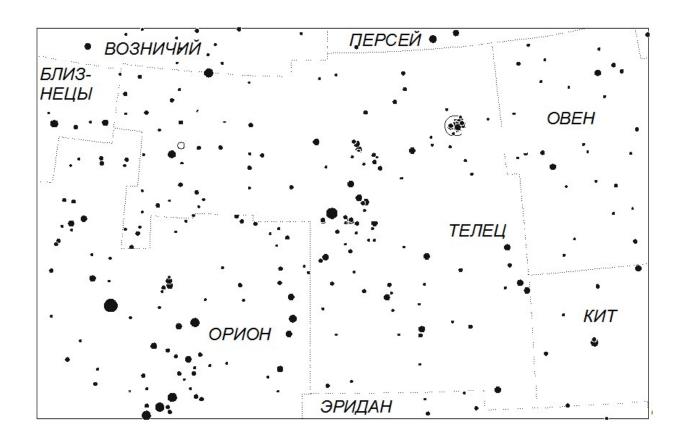
 $e = n^{2/3} - 1; 0 \le e \le 1$. Решение существует только для одного целого n, превышающего единицу: при n = 2 получаем e = 0.59. Орбитальный период кометы вдвое меньше орбитального периода планеты.


Задание 5. Различают четыре основных фазы Луны: новолуние, первая четверть, полнолуние и последняя четверть. Известно, что 23 июля 2017 года было новолуние.

- 1. Какая фаза у Луны наблюдалась 21 августа 2017 года? Ответ обоснуйте.
- 2. В какой стороне неба была видна Луна в эту дату?


3. В эту же дату наблюдалось полное солнечное затмение. Является ли это простым совпадением двух астрономических явлений? Сделайте поясняющий чертеж.

Возможное решение задания № 5.


- 1. 21 августа наблюдалось новолуние, так как продолжительность синодического месяца составляет 29,5 суток.
- 2. Луна не была видна на небе в новолуние.
- 3. Именно в эту дату прошло так солнечное затмение, как солнечные происходят затмения только во время новолуний, следовательно, совпадение ДВУХ астрономических событий является закономерным.

Задание 6. На рисунке представлен фрагмент карты звездного неба, небесные объекты которой видны на территории нашей страны. Подпишите на выданной карте известные вам названия созвездий, целиком или частично представленные на ней.

Возможное решение задания № 6. На рисунке приведены названия созвездий.

