Задача 1. (Пункт программы - 8.7, категория сложности - 2, муниципальный этап) Пучевая скорость Веги (α -Лиры) равна — 14 км/с, собственное движение 0,348"/год, а параллакс 0,124". Определите тангенциальную скорость Веги и полную пространственную скорость звезды относительно Солнца.

Решение.

Тангенциальную скорость зависит от собственного движения и параллакса $V_t = 4.74 \mu/\pi$ (км/c). $V_t = 13.3$ км/c.

Полную пространственную скорость определим по формуле $V^2 = V_t^2 + V_n^2$,где $V_n -$ лучевая скорость. Получим V = 19,3 км/с.

Критерии оценки

No	Элемент решения	Баллы
1.	Вычисление тангенциальной скорости	4
2.	Вычисление полной пространственной скорости	4

Задача 2. (Пункт программы - 9.2, категория сложности - 1, муниципальный этап) Какой нужен телескоп, чтобы в него непосредственно увидеть истинный диск звезды Бетельгейзе, угловой диаметр которой 0,04", если разрешающая сила телескопа выражена формулой d = 11,6"/D, где D — диаметр объектива телескопа в сантиметрах?

Решение.

Наблюдение звезд в телескоп связано с искажениями или аберрациями. При большом увеличении изображение звезды превращается в мутный диск. Телескопы – рефракторы (школьные телескопы) не пригодны для таких наблюдений. Найдем диаметр объектива D=290 см. Следовательно, для данного наблюдения нужен телескоп – рефлектор с диаметром объектива более 3м.

Критерии оценки

№	Элемент решения	Баллы
1.	Понятие разрешающей силы телескопа	2
2.	Вычисление диаметра объектива	4
3.	Анализ полученного результата	2

Задача 3. (Пункт программы - 8.2, категория сложности - 1, муниципальный этап)

Сколько звезд 6-й звездной величины имеют вместе такой же блеск как одна звезда 1-й звездной величины?

Решение. Из формулы Погсона $\lg \frac{E_1}{E_2} = 0.4(m_2 - m_1)$ имеем $\lg(E_1/E_2) = 2 \Rightarrow E_1 = 100E_2$

Значит, надо взять 100 звезд 6-й звездной величины.

Критерии оценки

No॒	Элемент решения	Баллы
1.	Понятие видимой звездной величины	2
2.	Формула Погсона для видимых звездных величин	2
	Определение класса звезд по температуре	
3.	Вычисление $E_1 = 100E_2$	2
4.	Анализ результатов	2

Задача 4. (Пункт программы - 8.6, категория сложности - 1, муниципальный этап)

Опишите спектр Солнца. Какие особенности солнечного спектра объясняют эволюцию Солнца?

Решение. Спектр Солнца включает все диапазоны электромагнитных волн. В видимой части — на непрерывном фоне радужного спектра четко видны темные линии поглощения — Фраунгоферовы линии. В них зашифрован химический состав Солнца, количественный состав солнечной атмосферы, эволюционные периоды жизни Солнца.

Критерии оценки

No	Элемент решения	Баллы
1.	Понятие непрерывного и линейного спектра	2
2.	Объяснение линий поглощения	2
3.	Связь спектра и химического состава Солнца	2
4.	Спектр и эволюция Солнца	2

Задача 5. (Пункт программы - 8.2, категория сложности - 1, муниципальный этап)

В созвездии Орион выделяют 2 яркие звезды: α — Бетельгейзе и β — Ригель. Следует ли из этого, что они находятся на одинаковом расстоянии от наблюдателя?.

Название	Температура	Масса в	Радиус в	Абсолютная
звезды	поверхности,	массах	радиусах	звездная
	К	Солнца	Солнца	величина
Бетельгейзе	3100	20	900	-5,14
Ригель	11200	40	138	-7,84

Решение. Анализ данных таблицы определяет, что Бетельгейзе остывающая звезда, красный сверхгигант, а Ригель – яркий горячий голубой гигант. Ригель ярче Бетельгейзе почти в 12 раз. Эти звезды не могут быть «родственниками», значит время их рождения и положение в пространстве Вселенной различаются. Только проекция на условную небесную сферу разместила их в одном созвездии.

Критерии оценки

$N_{\underline{0}}$	Элемент решения	Баллы

1.	Определение типа звезд по размеру	2
2.	Определение класса звезд по температуре	2
3.	Сравнение светимости звезд	2
4.	Анализ результатов	2