Задача 1. (тема: 6.1. Закон Всемирного тяготения, движение по круговой орбите – 1).

Условие

Используя табличные данные, определить ускорение свободного падения на Венере.

<u>Решение.</u> Ускорение свободного падения можно вычислить из закона Всемирного тяготения как $g=GM\backslash R^2$, где M – масса планеты; R – радиус планеты. Массу Венеры вычислим как $M=\rho V=4\rho*\pi R^3\backslash 3$, где ρ – плотность Венеры.

Объединяя формулы, имеем: $g=4G\rho\pi R \ 3 = 8.82 \text{ м} \ c^2$

Критерии оценивания

- 1.Понятие ускорения свободного падения 2 балла
- 2. закон Всемирного тяготения 2 балла
- 3. Умение пользоваться справочными материалами 2 балла
- 4. Вычисление результата 2 балла

Задача 2. (тема: 7.1. Схемы и принципы работы телескопов, категория – 1). Условие:

Каков размер объекта, различимого на поверхности Земли, для космонавта с остротой зрения 2' из космического корабля с высоты 220км? Решение.

Из тригонометрии следует R=D*q. Следует учесть соотношение между градусной и радианной мерами 1рад = 206265". Тогда $R=\frac{Dq}{206265}$

Размер объекта составит 130м.

Ответ 130 метров.

Критерии оценивания

- 1. Чертеж условия задачи 2 балла
- 2. Тригонометрическое соотношение 2балла
- 3. Соотношение между системами измерений 2балла
- 4. Вычисление результата 2 балла

Задача3. (тема: 6.1. Закон всемирного тяготения, движение по круговой орбите, категория -2).

Условие:

Определите первую космическую скорость при старте с поверхности Марса, используя справочные данные.

Решение.

Первая космическая скорость — это скорость, позволяющая любому объекту преодолеть тяготение небесного тела. Или первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над

поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите. Для расчета надо рассмотреть равенство центробежной силы и силы тяготения.

$$mv^2\R = GMm\R^2$$
. $\Rightarrow v^2 = GM\R$.

Вычисление дает результат v = 3,55 км\с

Критерии оценивания

- 1. Понятие первой космической скорости 2 балла
- 2. Понятие центробежной силы 2балла
- 3. Закон всемирного тяготения 2 балла
- 4. Вычисление результата 2 балла

Задача 4. (тема: 7.1. Схемы и принципы работы телескопов, категория – 2). Условие:

В телескоп на Луне можно рассмотреть объекты, размер которых 1км. Какие размеры объектов на Меркурии можно различить в этот же телескоп?

Решение.

Так как используют один телескоп, то его характеристики не изменяются. Значит можно воспользоваться соотношением $R_1 \setminus D_1 = R_2 \setminus D_2$ или $R_2 = R_1 \setminus D_2 \setminus D_1$ Тогда $R_2 = 1*57.9*10^6 \setminus 384400 = 150.6$ км.

Критерии оценивания

- 1. Понятие разрешающей силы тлескопа 2 балла
- 2. Вывод формулы Збалла
- 3. Вычисление результата 3 балла

Задача 5. (тема: 6.1. Закон всемирного тяготения, движение по круговой орбите, категория -2).

Условие:

Определите угловую и линейную скорости вращения Земли вокруг своей оси на разных широтах (на широте Брянска обязательно) и вокруг Солнца. Орбиту планеты считать круговой.

Решение.

Известно, что Земля вращается вокруг своей оси. Это определяет смену дня и ночи. Один оборот вокруг своей оси Земля делает за 23часа 56минут 4,09 секунды. В обычной жизни принято считать этот период, или одни сутки, равным 24 часа. Для простоты счета будем использовать это значение. Тогда угловая скорость для любой точки земной поверхности составит $\omega = \phi/T$.

T = 24*3600=86400c.

$$\omega = 2\pi/86400 = 7,27*10^{-5}$$
 (рад/с) или $\omega = 360/86400 = 4,17*10^{-3}$ (°/с) = 15 (°/ч)

Линейная скорость точек земной поверхности при вращении Земли вокруг своей оси зависит от широты места наблюдения. $\upsilon = 2\pi R/T$

Рассчитает для экватора: $\mathbf{R} = 6400 \text{км} = 640000 \text{м}$.

Тогда υ =(2*3,14*6400000)/86400 = 465м/c=1674км/ч.

На широте Брянска ($\phi = 53^{\circ}15'$) радиус вращения составит $6400*\sin 53^{\circ}15' = 5120$ км. Тогда $\upsilon = (2*3,14*5120000)/86400=372,15$ м/с = 1340км/ч.

При рассмотрении движения Земли вокруг Солнца будем считать, что орбита Земли имеет форму окружности. При этом Землю можно считать материальной точкой. Тогда угловая скорость составит $\omega = \phi/T = 2\pi/365 = 0,017$ (рад/день) = 0,986 (°/день). Линейная скорость составит: $\upsilon = 2\pi R/T$

 $\upsilon = (2*3,14*149*10^6)/365=2,56*10^6 (км/день) = 29,8 (км/с).$

Ответ: вращение вокруг своей оси 15(°/ч), вращение вокруг Солнца 0,986(°/день).

Критерии оценивания

- 1. Вычисление линейной скорости на экваторе 3 балла
- 2. Вычисление линейной скорости на широте Брянска Збалла
- 3. Вычисление угловой скорости 2 балла

Задача 6. (тема: 6.2. Механика планет в Солнечной Системе (приближение круговых орбит), категория –2).

Условие:

Определите среднее расстояние Венеры от Солнца, если ее нижние соединения с Солнцем повторяются через 1,6 года.

Решение.

Синодический период — это промежуток времени между последовательными одинаковыми конфигурациями планет. Так как Венера — внутренняя планета для наблюдателя Земли, то формула синодического периода имеет вид $S = T_3 T_B \setminus (T_3 - T_B)$

Найдем сидерический период Венеры : $T_B = ST_3 \setminus (T_3 + S) = 1,6 \setminus 2,6 = 0,615$ года. Согласно третьему закону Кеплера : $T_1 \times T_2 = a_1 \times a_2$ Зная, что $T_3 = 1$ год, $a_3 = 1$ а.е., получим $a_B = 0,72$ а.е.

Критерии оценивания

- 1. Понятие синодический период 2 балла
- 2. Третий закон Кеплера 2балла
- 3. Вычисление сидерического период Венеры 2 балла
- 4. Вычисление результата 2 балла