Департамент образования Ярославской области Всероссийская олимпиада школьников 2015/2016 учебного года

Химия, 10 класс, муниципальный этап Варианты решения задач и ответы

Максимальные баллы за выполнение заданий (тах – 67 баллов)

Задания, вопросы и их оценка

1	2	3	4
Задание 1	Агент 006 из ПСХЭ		max 9 б
Вопрос 1	На ваш взгляд, какова самая точная формулировка	1 б	
	предмета «Органическая химия»		
	«Ода» углероду или в чем уникальность,		
Вопрос 2	исключительность и его неповторимость Назовите	5 б	
	элемент, который входит в максимальное число		
Вопрос 3	веществ на Земле	1 б	
	Об аллотропии углерода		
Вопрос 4		2 б	
Задание 2	Два оксида α и β, дающие	6 б	тах 6 б
	две кислоты Х и Ү		
Задание 3	Об углеводородах		тах 8 б
Вопрос 1	Физические свойства алканов	2.5 б	
Вопрос 2	От простейшей формулы углеводорода к истинным	5.5 б	
Задание 4	Из пункта CuSO ₄ в пункт Cu(NO ₃) ₂ с	14 б	max 14 б
	промежуточной остановкой в пункте Х		
Задание 5	рН раствора	10 б	max 10 б
Задание 6	Из этанола C ₂ H ₅ OH к алкену X и диену Y.	10 б	тах 10 б
	Их полное окисление		
Задание 7	Даешь из карбидов алюминия и кальция	10 б	тах 10 б
	углеводороды!		
	Итого:	67 б	тах 67 б

Задание 1. Агент 006 из ПСХЭ

(max – 9 баллов)

Вопрос 1.

Ответ:

«Органическая химия — это химия углеводородов и их производных», - определение по Карлу Шорлеммеру (1834-1892).

Вопрос 2.

Ответ:

Элемент углерод 6С находится в центре второго периода, четвёртой группе, главной подгруппе.

0,5 балла

2.1. Имеет небольшой (промежуточный) радиус атома:

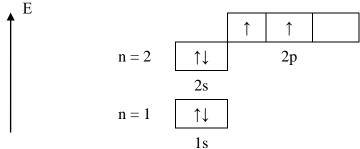
$$r_{\text{at}}(Li) > r_{\text{at}}(Be) > r_{\text{at}}(B) > \boldsymbol{r_{\text{at}}(C)} > r_{\text{at}}(N) > r_{\text{at}}(O) > r_{\text{at}}(F).$$

0,5 балла

2.2. Промежуточное значение относительной электроотрицательности (ОЭО):

O9O (Li) O9O (C) O9O (F)
$$\approx 1$$
 $<$ 2,5 $<$ ≈ 4 $\approx \min$

0,5 балла


Вывод: небольшой (промежуточный) радиус атома углерода и промежуточное значение относительной электроотрицательности благоприятствует образованию прочных ковалентных связей.

0,5 балла

2.3. Валентность атома углерода, как правило, равна IV.

0.5 балла

Валентные возможности атома углерода с точки зрения графической электронной формулы атома углерода:

Рассмотрим внешний энергетический уровень атома углерода: n = 2.

- 1. Число орбиталей с неспаренными электронами 2
- 2. Число свободных (вакантных) орбиталей 1
- 3. Число орбиталей со спаренными электронами 1

Итого: 4. **0,5 балла**

2.4. Атомы углерода способны соединяться:

2.4.1. друг с другом, образуя цепи с одинарными, двойными и тройными связями:

$$C - C - C - C - C$$
; $C = C - C - C$; $C \equiv C - C - C$

0,5 балла

2.4.2. замыкаться в циклы: Δ ; \Box ; \triangle ; \bigcirc . . .

0,5 балла

2.5. Органические вещества, по мере возрастания числа углеродных атомов в молекуле, образуют многочисленные изомеры. **1 балл**

Просто справка. Так у С15Н32 число изомеров 4347.

Вопрос 3.

Ответ:

Это – водород, а не углерод!

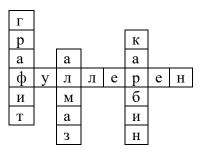
0,5 балла

Комментарии: углерод входит во все органические соединения, как правило, в эти соединения входит и водород. Но водород входит и во многие неорганические соединения:

кислоты: $HCl; H_2SO_4 ...$

кислые соли: NaHCO₃, Ca(HCO₃)₂ ...

основания: NaOH, Fe(OH)₃ ...


гидриды: NaH, CaH2... (нелетучие)

NH₃, H₂S...(летучие) и т. д.

0,5 балла

Вопрос 4.

Ответ:

Горизонталь – фуллерен Вертикали – графит алмаз карбин

0,5 балла 0,5 балла 0,5 балла 0,5 балла

Всего:

9 баллов

Задание 2. Два оксида...

(тах – 6 баллов)

1.
$$\begin{cases} \alpha + \beta \rightarrow x + y \\ 2NO_2 + H_2O = HNO_3 + HNO_2 \end{cases}$$

$$2 + 1 = 3$$
 балла

2.
$$\begin{cases} y \rightarrow x + ..?.. + ..?.. \\ 3HNO_2 = HNO_3 + 2NO \uparrow + H_2O \end{cases}$$

1 балл

3.
$$\begin{cases} x + \text{NaCl} \rightleftharpoons ..?.. + ..?.. \\ \text{HNO}_3 + \text{NaCl} \rightleftharpoons \text{HCl} + \text{NaNO}_3 \end{cases}$$

1 балл

1 балл

Ответ: $\alpha \rightarrow NO_2$

 $\beta \rightarrow H_2O$

 $x \rightarrow \text{HNO}_3$

 $y \rightarrow HNO_2$

Оценивание:

1. Названы два оксида а и β

 $0.5 \times 2 = 1$

2. Названы кислоты х и у

 $0.5 \times 2 = 1$

3. Четыре схемы трансформированы в четыре уравнения

 $1 \times 4 = 4$

Всего: 6 баллов

Задание 3. Об углеводородах...

(тах – 8 баллов)

Вопрос 1.

Ответ:

A CH ₃ -CH ₂ -CH ₂ -CH ₃ Б CH ₃ -CH(CH ₃)-CH ₃	$\Bigg\} \ \ \mathrm{C_4H_{10}}$	(0,25 б) (0,25 б)
B CH ₃ -CH ₂ -CH ₂ -CH ₃)	(0,25 б)
Γ CH ₃ -CH(CH ₃)-CH ₂ -CH ₃	\leftarrow C ₅ H ₁₂	(0,25 б)
Д СН ₃ -С(СН ₃) ₂ -СН ₃	J	(0,25 б)

3десь: $0,25 \times 5 =$ **1,25 балла**

A	Б	В	Γ	Д
4	5	1	2	3
\ <u></u>			0.255	1 25 5

 $0.25 \times 5 =$ **1.25** балла

Просто справка: ход мысли школьника.

- 1. Первые четыре алкана (С₁-С₄) при обычных условиях газы.
- 2. Чем более структура углеводорода отличается от нормальной (неразветвлённой), тем ниже температура кипения по сравнению с нормальным (неразветвлённым) изомером.

Вопрос 2.

Ответ:

1. Простейшая формула (рассуждения о 100 г вещества $C_x H_y$)

 $1.1. \ n(H) = 7.69/1 = 7.69 \ (\text{моль})$

1.2. n(С)=92.31/12=7.69 (моль)

n(C): n(H) = 7.69:7.69=1:1

Простейшая формула C_1H_1

2. Максимальное целое число атомов углерода 80:12 = 6,666... т. е. 6.

1 балл

0.5 балла

3. Гипотетические (предполагаемые) варианты углеводородов:

$N \rightarrow$	1	2	3	4	5	6
Формула $C_x H_x$	C_1H_1	C ₂ H ₂	C ₃ H ₃	C ₄ H ₄	C ₅ H ₅	C ₆ H ₆

4.1. $H - C \equiv C - H$

sp – гибридизация; молекула линейная, т. е. все четыре ядра четырёх атомов лежат на одной линии.

$$0.33 + 0.33 + 0.33 = 1$$
 балл

4.2.

sp²-гибридизация; молекула плоскостная (вытянутый прямоугольник).

$$0.33 + 0.33 + 0.33 = 1$$
 балл

4.3.

sp²-гибридизация; молекула плоскостная (правильный шестиугольник)

$$0.33 + 0.33 + 0.33 = 1$$
 балл

Всего: 8 баллов

Задание 4. Из пункта CuSO₄ в пункт Cu(NO₃)₂ с промежуточной остановкой в пункте X... (тах – 14 баллов)

Случай а):

$$1)$$
 CuSO₄ + Zn = ZnSO₄ + Cu
$$Cu^{2+} + Zn = Zn^{2+} + Cu$$
 0.5 балла

2)
$$Cu + 4HNO_3(конц) = Cu(NO_3)_2 + 2NO_2\uparrow + 2H_2O$$
 или $3Cu + 8HNO_3(разб) = 3Cu(NO_3)_2 + 2NO\uparrow + 4H_2O$

1 балл

$$\begin{cases} Cu^0 + 4H^+ + 2NO_3^- + = Cu^{2+} + 2NO_2 \uparrow + 2H_2O \text{ или} \\ 3Cu^0 + 8H^+ + 2NO_3^- + = 3Cu^{2+} + 2NO \uparrow + 4H_2O \\ X \rightarrow Cu \rightarrow \text{металл} \end{cases}$$

0.5 балла 0.5 балла

Р. S. оценивается только один вариант: или HNO₃(конц) или HNO₃(разб).

Случай б):

$$\begin{array}{ll} CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow + Na_2SO_4 & \textbf{1 балл} \\ Cu^{2+} + 2OH^- = Cu(OH)_2 \downarrow & \textbf{0.5 балла} \\ Cu(OH)_2 + 2HNO_3 = Cu(NO_3)_2 + 2H_2O & \textbf{1 балл} \\ Cu(OH)_2 + 2H^+ = Cu^{2+} + 2H_2O & \textbf{0.5 балла} \\ X \rightarrow Cu(OH)_2 - основание & \textbf{0.5 балла} \end{array}$$

Случай в):

t

$2CuSO_4 = 2CuO + 2SO_2\uparrow + O_2\uparrow$	1 балл
(процесс идёт не в водном растворе)	
$CuO + 2HNO_3 = Cu(NO_3)_2 + H_2O$	1 балл
$CuO + 2H^+ = Cu^{2+} + H_2O$	0.5 балла
$X \to CuO \to $ оксил	0.5 балла

Случай г):

$CuSO_4 + K_2S = CuS \downarrow + K_2SO_4$	1 балл
$Cu^{2+} + S^{2-} = CuS$	0.5 балла
$CuS + 10HNO_3 = Cu(NO_3)_2 + 8NO_2 \uparrow + H_2SO_4 + 4H_2O$	1 балл
$CuS + 8H^{+} + 8 NO_{3}^{-} = Cu^{2+} + 8NO_{2} \uparrow + SO_{4}^{-} + 4H_{2}O$	0.5 балла
$X \rightarrow CuS \rightarrow coль$	0.5 балла
$X \rightarrow$ Cu-металл; Cu(OH) ₂ – основание; CuO \rightarrow оксид; CuS \rightarrow соль.	

Всего: 14 баллов

Задание 5. рН раствора

(max – 10 баллов)

1. Определим газ А и его количество.

Продуктом обжига пирита является сернистый газ – SO_2 . 1 балл 4 $FeS_2 + 11 O_2 = 2 Fe_2O_3 + 8 SO_2$ 1 балл

 $n(FeS_2) = 30/120 = 0.25$ моль, $n(SO_2) = 0.5$ моль, но по условию сказано, что количество газа одна десятая, таким образом $n(SO_2) = 0.05$ моль

1 балл

2. Очевидно, что **B** – это $\mathbf{Br_2}$, $\mathbf{n}(\mathbf{Br_2}) = 4*1,25*10^{-2} = \mathbf{0.05}$ моль

2 балла

3. Бром реагирует с сернистым газом в присутствии воды по реакции

$$Br_2 + SO_2 + 2H_2O = H_2SO_4 + 2HBr$$

1 балл

 $n(Br_2): n(SO_2) = 1: 1 \Rightarrow n(H_2SO_4) = 0.05$ моль, а n(HBr) = 0.1 моль

4. Определим pH растворов. $n(H^+)=2n(H_2SO_4)+n(HBr)=0,2$ моль $c(H^+)=0,2$ моль / 4 $\pi=0,05$ моль/л.

$$pH = -lg \ 0.05 = 1.3$$

2 балла

5. Если сернистый газ заменить на углекислый, то рН будет выше.

$$Br_2 + CO_2 + H_2O \neq$$

$$CO_2 + H_2O \Leftrightarrow H_2CO_3 \tag{1}$$

$$Br_2 + H_2O \Leftrightarrow HBr + HBrO \tag{2}$$

Очевидно, что в 1 и 2 реакциях равновесие смещено влево, и количество катионов водорода значительно меньше, чем в случае с сернистым газом, а т.к. количество H^+ меньше, то и $c(H^+)$ меньше \Rightarrow pH- выше.

Оценивание:

1. Определение A, B – no 1 б.	Итого 2 б.
2. Расчет количеств $A \ u \ B = no \ 1 \ б$.	Итого 2 б.
3. Уравнения обжига пирита и взаимодействия А и В между собой по 1 б.	Итого 2 б.
4. 3a pacчem pH –	2 б.
5. За любое разумное объяснение pH раствора, при замене SO_2 на CO_2 –	2 б.

Всего: 10 баллов

Задание 6. Из этанола СН₃-СН₂-ОН к алкену X, диену Y (тах – 10 баллов)

1)
$$C_2H_5OH \xrightarrow{H_2SO_4; t > 150^{\circ}C} H_2C = CH_2 + H_2O$$

1 балл

2) $5H_2C^{-2}=C^{-2}H_2+12KMn^{+7}O_4+18H_2SO_4 \rightarrow 10CO_2+12MnSO_4+6K_2SO_4+28H_2O_4$

2 балла

2 балла

3)
$$2 C_2 H_5 OH \xrightarrow{Al_2 O_3; ZnO; t = 425^{\circ}C} H_2 C = C - C = C + H_2 + H_2 O$$

1 балл

Для справки: реакция Лебедева, завод СК-Премьер, Ярославль, 1932 г.

4)
$$5H_2C^{-2}=C^{-1}H-C^{-1}H=C^{-2}H_2+22KMn^{+7}O_4+33H_2SO_4=20CO_2+22MnSO_4+11K_2SO_4+48H_2O_4$$
 2 балла

2 балла

Оценивание:

Правильно записаны уравнения 1 и 3	$1 \times 2 = 2$
Правильно записаны уравнения 2 и 4	2 x 2 = 4
Представлен баланс для уравнений 2 и 4	2 x 2 = 4

Всего: 10 баллов

Задание 7. Даешь из карбидов алюминия и кальция углеводороды!

(max – 10 баллов)

1. Гидролиз карбидов (взаимодействия с водой) и информация (количественная) из уравнений.

$$Al_4C_3 + 12 H_2O = 4 Al(OH)_3 + 3 CH_4 \uparrow$$

1 балл

х моль 3х моль

$$CaC_2 + 2 H_2O = Ca(OH)_2 + C_2H_2 \uparrow$$
 у моль у моль

1 балл

где x моль – количество в смеси Al₄C₃ у моль – количество в смеси CaC_2

Вывод: количество смеси (х+у)моль карбидов, а (3х+у)моль – количество газов.

0.5 балла

2. Подготовительный этап

2.1.
$$M(cмecu) = 32/1,6 = 20 (г/моль)$$

2.2.
$$Mr(CH_4) = 12+4=16$$
 $Mr(Al_4C_3) = 108+36=144$ $Mr(C_2H_2) = 24+2=26$ $Mr(CaC_2) = 40+24=64$

2.5 балла

3. Соотношение х и у:

2x = y или x=0.5y

$$\frac{3x * 16 + 26y}{3x + y} = 20$$

$$20(3x + y) = 48x + 26y$$

$$60x + 20y - 48x - 26y = 0$$

$$12x = 6y$$

1 балл

1 балл

4. Массовые доли карбидов в смеси:

4.1

$$\omega(\text{Al4C3}) = \frac{144\text{x}}{144\text{x} + 64\text{y}}$$
 При $\text{y} = 2\text{x}$ $(\text{x} = 0.5\text{y})$ $\omega(\text{Al4C3}) = \frac{144\text{x}}{144\text{x} + 128\text{x}} = \frac{144\text{x}}{\text{x}(144 + 128)} = \frac{144}{272} = 0.5294$ $\omega(\text{Al}_4\text{C}_3) = 0.5294$ или 52.94%

1.5 балла

4.2

$$\omega(\text{CaC2}) = \frac{64\text{y}}{144\text{x} + 64\text{y}} = \frac{64\text{y}}{72\text{y} + 64\text{y}} = \frac{64\text{y}}{136\text{y}} = \frac{64}{136} = 0.4706$$
 $\omega(\text{CaC}_2) = 0.4706$ или 47.06%

1.5 балла

10 баллов Всего: