

	шифр										

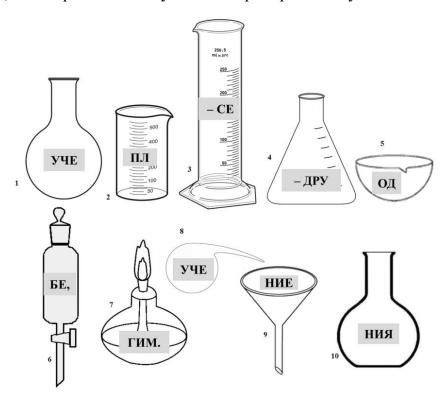
Муниципальный этап Всероссийской олимпиады школьников по химии 2018/2019 учебного года

Комплект заданий для учащихся 8 класса

общий балл	100	
5	20	
4	20	
3	20	
2	20	
1	20	
	баллов	
задания	количество	баллы
номер	максимальное	полученные

Председатель жюри:	 (
Члены жюри:	 (
	 (
	(

Инструкция по выполнению олимпиадной работы


На выполнение олимпиадной работы отводится **не более 4 астрономических часов**. Работа состоит из **5 теоретических заданий с письменным ответом**. Каждое задание оценивается в 20 баллов. Задания разделены на несколько этапов, баллы за правильные ответы на каждом этапе суммируются. **Максимальное общее количество баллов** составляет **100**.

Для успешной работы рекомендуем несколько простых приемов:

- внимательно прочитайте вопрос, определите, что нужно указать в ответе (выделено жирным шрифтом)
- отвечайте конкретно, в ответе записывайте только те сведения или данные, о которых спрашивается, не нужно детализировать информацию
- рекомендуется выполнять задания в том порядке, в котором они даны; для экономии времени пропускайте задание, которое не удается выполнить сразу, и переходите к следующему; вы сможете вернуться к пропущенному заданию после выполнения всей работы, если останется время
- постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов Целесообразно использовать Периодическую систему химических элементов и непрограммируемый калькулятор.

Желаем успеха!

- **Задание 1.** Важным атрибутом химической «кухни» является лабораторная посуда, изготавливаемая из специальных материалов. На рисунке изображены наиболее часто применяемые виды лабораторной посуды с фрагментами надписи. Выполните следующие задания.
- **1.1.** Назовите **каждый вид лабораторной посуды** и приведите **название метода** разделения смеси, в котором используется лабораторная посуда №9.

1.2. Мысленно расставьте посуду в определенном порядке, начиная с №1, составьте и запишите фразу из пяти слов — высказывание Дмитрия Ивановича Менделеева о смысле учения; укажите номер лабораторной посуды для перегонки, название которой в переводе с латинского языка означает «повёрнутая назад».

1.3. Решите головоломку и запишите: а) **название лабораторной посуды**, которая обычно используется для проведения опытов с малыми порциями твердых и жидких регентов; б) **название материала**, из которого изготавливается эта посуда. Внимание! Двигаться можно только по горизонтали (влево-вправо) или по вертикали (вверхвиз). Каждая клетка может быть использована только один раз! Пройти нужно все клетки, начиная с верхней левой.

П	P	Н	Γ	О
Б	О	Е	У	П
И	P	Т	С	О
A	К	Е	Е	P
О	Л	К	О	Н

- Задание 2. Периодическая система химических элементов Дмитрия Ивановича Менделеева (сокращенно ПСХЭ) графическое отражение открытого им в 1869 году периодического закона, уже почти 150 лет является важнейшим интеллектуальным инструментом для ученых-химиков всего мира, и также неисчерпаемым источником шуточных и серьезных задач для обучения юных химиков. Внимание! Для выполнения следующих заданий используйте ПСХЭ из Приложения.
- **2.1.** Укажите порядковый номер в ПСХЭ и относительную атомную массу (округленную до целого числа) химического элемента, в русском названии которого «скрывается»:
 - а) «весёлое зрелищное представление с участием людей и животных»
- б) «командный вид спорта с мячом, в котором участники играют верхом на лошадях»
- **2.2.** Приведите **символ и число электронных слоев** в атоме химического **элемента**, название которого произошло от названия страны:
 - а) Франции
 - б) России
- 2.3. Установите химическую формулу и название зашифрованного вещества:
 - a) 6_11_4
 - $6) 1_2 16_1 8_4$
- **2.4.** Определите **название** химического **элемента**, пропущенного в указанной логической цепочке, и составьте химическую **формулу** его **высшего оксида**:
 - a) $\dots Si N S F$
 - б) $Ca \dots Cr Fe Ni$
- **Задание 3.** Расставьте недостающие коэффициенты в указанных схемах химических реакций. Общая сумма правильно расставленных коэффициентов будет равна относительной молекулярной массе негашеной извести.
- **3.1.** Запишите со всеми коэффициентами **химические уравнения 1-9** и вычислите значение **общей суммы коэффициентов**.

№	схема химической реакции	сумма коэффициентов
1	$Fe(OH)_3 \rightarrow Fe_2O_3 + 3H_2O$	
2	$Fe_2O_3 + H_2 \rightarrow 2Fe + 3H_2O$	
3	$Cr_2O_3 + 6HCl \rightarrow CrCl_3 + 3H_2O$	
4	$Cu(OH)_2 \rightarrow CuO + H_2O$	
5	$2Na + H_2O \rightarrow 2NaOH + H_2$	
6	$NaOH + HNO_3 \rightarrow NaNO_3 + H_2O$	
7	$CO_2 + H_2O \leftrightarrows H_2CO_3$	
8	$N_2 + O_2 \rightarrow NO$	
9	$AlCl_3 + 3NaOH \rightarrow Al(OH)_3 + NaCl$	
		общая сумма коэффициентов =

3.2. Установите химическую формулу негашеной извести, если массовое содержание кальция в этом веществе в 2,5 раза больше, чем другого элемента.

Задание 4. Установить соответствие, так, чтобы каждой цифре левого столбца соответствовала буква правого столбца.

название вещества	группа химической продукции
1. ацетон	А. пищевой консервант
2. мочевина	В. витамин
3. индиго	С. пластмасса
4. полиэтилен	D. удобрение
5. ретинол	Е. краситель
6. найлон	F. строительный материал
7. дихлофос	G. индикатор
8. метилоранж	Н. волокно
9. мрамор	J. растворитель
10. уксус	К. ядохимикат

Задание 5. В стратосфере на высоте 20-30 км находится слой газообразного вещества X, защищающий Землю от ультрафиолетового излучения. Подсчитано, что на каждого жителя Екатеринбурга в воздушном пространстве (вплоть до верхней границы стратосферы) над городом приходится по 150 моль вещества X.

- **5.1.** Приведите **название и** химическую **формулу** газа X.
- **5.2.** Рассчитайте **число молекул** газа X, приходящееся в среднем на одного жителя Екатеринбурга.
- **5.3.** Вычислите **молярную массу** (г/моль) газа X и **массу** (кг) указанной в задаче порции его молекул.
- **5.4.** Рассчитайте **количество вещества** (моль) газа X, который образуется в воздухе при грозовом разряде из $1,806\cdot 10^{23}$ молекул другого компонента атмосферы газа Y; а также укажите **признак** образования газа X во время грозы.

Приложение. Периодическая система химических элементов Д. И. Менделеева

§ 89	57 J	летучие водородные соединения	высшие оксиды	7	0		ڻ ت		4		ယ	N	_	оды		
522	7 La 2 7 ЛАНТАН 159 138,906 2	летучие зодородные соединения	ШИЕ	10	9	8	7	6	IJ	4	ω	N	-	Ряды		
1590 Th 291	58 Се 59 Рг церий 18 празеодия 140,12 2 140,908		R_2O	Нг 87 а дранций 32	3000 196.9	CS 55 1	47 Ag	Rb 37 рубидий 18 85,468	29 Cu	К калий 39,102		Li 3 литий 6,941	Н 1 водород 1,008	а – б		
2 91 D ₂ 2 92	NJ 00 10 00 10 00 10		RO	Ra	u 12 80 Hg	Ва 56 8 Барий 188 137,34 8	48 Cd 118 КАДМИЙ 112.41	Sr 38 2 2 Стронций 18 18 18 87.62 2 2 2	28 30	Са 20 кальций 8 40,08	Mg 12 магний 2 24.312 2	Ве 4 БЕРИЛЛИЙ 2 9,0122 2		а = б	_	
11 393 Nm	60 Nd 261 Pm 362 Sm неодим зпрометий в самарий 144.24 3 [145] самарий		R_2O_3	89-103 актиноиды	Таллий 3 204.37	57-71 лантаноиды	In 49 индий 114,82	39 Ү	Ga 31 галлий 19	21 Sc ² скандий ^{44,956}	AЛЮМИНИЙ 3 26,092	B 5		а =	7	
A P	150,4 2 62 Sm 2 150,4 2 350,4	RH ₄	RO_2	104 Rf 132 132 132 132 132 132 132 132 132 132	Рb 82 свинец 207.19	72 Нf 132 гафний 133 гафний 134 178,49	Sn 50 1 0 0лово 18 0 2 1 18.69	2 40 15 цир	Ge 32 германий 18 72.59	22 Ti 10 TITAH 8 47,956	Si 14 кремний 4 28,086 8	С 6 УГЛЕРОД 4		a V	=	
СТИНО 1 895 Am 896 Cm	Н	RH	R_2O_5	105 Д Ь	Ві 83	73 Ta 32 TAHTAJI 8 180,948	Sb 51 51 51 51 51 51 51 51 51 51 51 51 51	41 Nb 122 ниобий 92,906	AS 33 мышьяк 18 74,922	23 V 11. ВАНАДИЙ 13. 8 50.941 2	Р 15 фосфор 5 30,974 8	N 7 A30T 14,007 5		a <	9	
	А Н О П 3 64 Gd 265 Л 157.25 2 158	H ₂ R	RO_3	282 сиворгий [263]	Ро 84 16 полоний 1332 [210]	74 V 132 ВОЛЬФР 183	Te 52 6 1 TEALTYP 18 H 127.6 2 17	ээба. 42 мол	Se 34 CEJNEH 18	24 Cr	CEPA 16	О 8 кислород 5 15,999 2		а Ч	-	
И Д Ы 97 RL 398 Cf	75 ТЪ 366 Dy тербий 18 диспрозий 1 158.926 5 162.5	HH	R_2O_7	13 107 Bh	ACTAT [Z10]	ಸಾಹತೆಜಿವನ 75	I 53 7 18 18 126.905 28	43 Тс 13 Технеций 18 Технеций 1991	Br 35	25 Mn 13 MAPTAHEU 2 54.938	CI 17 XAOP 35,453	фгор 18,998 - 7		a 4		
. \$99 Fc \$100 Fm \$101 Md \$102 No \$103 Lr	267 ПО 268 ГГ 269 в гольмий в эрвий 31 164.93 2 167.26 2		RO_4	24 108 Hn 25 109 Mt 25 110 22 22 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	J	12 76 OS 15 77 IГ 17 78 32 осмий 32 иридий 35 плат 18 190.2 8 192.22 5 11		44 Ru 45 Rh 46 15 рутений 15 родий 13 палл. 2 101.07 2 102.906 8 палл.		26 Fe 27 Co 28 14 железо 15 ковальт 16 ни 55,849 5 58,933 5 ни				6	- C	
2 No. \$103 Tr	Tm 270 Yb 271 Lu гулий и иттервий да лютеций и ттервий да лютеций и и 173,04 д 174,97			X-320 V	Rn 86 88 88 88 88 88 88 88 88 88 88 88 88		Хе 54 ксенон 188 мо 131,3 може м		Кг 36 криптон :8 и 83,8 2 к	x-2z	Ar 18 APFOH 8 K	Ne 10 HEOH 5 k	Не гелий 2 к	Энергетт	ичесх	
		d-элементы f-элементы	р-элементы	s-элементы	РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОНОВ ПО СЛОЯМ	ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА		Rb 37 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ЭЛЕМЕНТА	1834—1907	Д.И. Менделеев					