Задание 9-1

Три элемента A, Б, В принадлежат к тому же периоду, что и элемент, занимающий второе место по распространенности в земной коре. Из простых веществ, образованных элементами A и Б, при взаимодействии с простым веществом, образованным элементом B, получаются соответственно соединения состава AB и БВ₃. Простое вещество, образованное элементом B, использовали в Первую мировую войну как боевое отравляющее вещество.

- 1. Определите элементы А, Б, В.
- 2. Составьте уравнения описанных в задании реакций.
- 3. Определите и назовите вещества АВ и БВ₃.

Решение:

- 1. Элементы А натрий, Б алюминий, В хлор.
- $2. \quad 2Na + Cl_2 = 2NaCl$

 $2Al + 3Cl_2 = 2AlCl_3$

3. AB – NaCl, хлорид натрия

БВ₃ – AlCl₃, хлоридалюминия

Распределение по баллам к заданию 9-1

Содержание верного ответа	Баллы
Определены элементы	3 балла
Составлены уравнения реакций	2 балла
Определены и названы вещества АВ и БВ3	2 балла
Итого:	7 баллов

Задание 9-2

Цинковую пластинку массой 20,0 г опустили в раствор CdSO₄ массой 493,0 г. В момент извлечения пластинки из раствора массовая доля ZnSO₄ в растворе оказалась равной 2,08%. Рассчитайте массу пластинки после извлечения ее из раствора.

Решение:

i emenine.	
$Zn + CdSO_4 = ZnSO_4 + Cd\downarrow$	(1 балл)
Пусть в реакцию вступил цинк количеством вещества х моль. Тогда:	
$\Delta m(\Pi\Pi.) = m(Cd) - m(Zn) = x * M(Cd) - x*M(Zn) = 112x - 65x = 47x (r)$	(2балла)
Масса раствора после реакции уменьшилась на величину Δm (пл.):	
$m(пл.)_{\text{конечн.}} = 493.0 - 47x (г)$	(1 балл)
В конечном растворе:	
$m(ZnSO_4) = n(ZnSO_4)*M(ZnSO_4) = x*161 (\Gamma)$	(1 балл)
Для массовой доли ZnSO ₄ находим:	
0.0208 = 161x / (493-47x)	(1 балл)
Отсюда:	
x = 0.0633 моль;	(1 балл)
$\Delta m(\Pi \Pi \Pi) = 47x = 0.0633*47 = 2.98 (\Gamma)$	(1 балл)
$m(\Pi \Pi.)_{\text{конеч}} = m(\Pi \Pi.)_{\text{исх}} + \Delta m(\Pi \Pi.) = 20,0 + 2,98 \approx 23 \; (\Gamma)$	(1 балл)
Ответ: 23 г.	
Итого: 9 баллов	

Задание 9-3

Для отопления здания в течение отопительного сезона было использовано 10 тонн угля, содержащего 5% пирита (FeS₂).

1. Рассчитайте, сколько литровых бутылок концентрированной серной кислоты (концентрация 98%, плотность 1,836 г/см³) можно получить, если весь образовавшийся за сезон оксид серы (IV) количественно превратить в серную кислоту. Составьте уравнения реакций, отражающих процесс получения серной кислоты из пирита.

Пирит является сырьем для производства еще одного продукта крупнотоннажного химического производства помимо серной кислоты.

- 2. Укажите, какой это продукт. Запишите химические реакции, лежащие в основе получения этого продукта из пирита двумя различными способами.
- 3. Объясните, почему пирит называют «золотом дураков».

Решение

1. В одной литровой бутылке будет содержаться $m(H_2SO_4)=1000 \text{ см}^3*1,836 \text{ г/см}^3*0,98=1799,3 \text{ г}$

 $n(H_2SO_4) = 18,36$ моль

Уравнения реакций:

 $4FeS_2 + 11O_2 = 2Fe_2O_3 + 8SO_2$

 $2SO_2 + O_2 = 2SO_3$

 $SO_3 + H_2O = H_2SO_4$

Если обобщить схему реакций, то получим:

 $FeS_2 \rightarrow 2H_2SO_4$

Из 1 моль пирита получается 2 моль серной кислоты.

В 10 тоннах угля содержится $500~\rm kr$ пирита. $500~\rm kr$ FeS $_2$ соответствует $4167~\rm mоль$ пирита, из которого можно получить $8334~\rm mоль$ серной кислоты; из этого количества можно получить $454~\rm бутылки$ 98%-ной серной кислоты.

2. Помимо получения серной кислоты пирит является сырьем металлургических производств, производящих железо и его сплавы.

Основное сырье, из которого непосредственно получают железо – оксиды железа, которые получают обжигом пирита:

 $4FeS_2 + 11O_2 = 2Fe_2O_3 + 8SO_2$

Эта стадия будет одинакова для обоих процессов, которые различаются способом восстановления железа из оксидов. В зависимости от восстановителя можно выделить следующие способы:

Карботермический: $Fe_2O_3 + 3C = 2Fe + 3CO$ Гидротермический: $Fe_2O_3 + 3H_2 = 2Fe + 3H_2O$

Металлотермический: $Fe_2O_3 + 2Al = 2Fe + Al_2O_3$

3. Некоторые кристаллические формы пирита обладают золотистым блеском, благодаря чему внешне похожи на золото, что явилось причиной многочисленных ошибок золотоискателей, принимавших пирит за драгоценный металл.

Распределение по баллам к заданию 9-3

Содержание верного ответа	Баллы		
Рассчитано количество вещества серной кислоты, содержащейся в 1 бутылке	2 балла		
Рассчитано количество вещества пирита, содержащегося в 10 тоннах угля	2 балла		
Определено количество бутылок серной кислоты	1 балл		
Написаны уравнения реакций получения серной кислоты из пирита	3х1=3 балла		
Написаны уравнения реакций получения железа из оксида железа (III)	2х1=2 балла		
Дано объяснение, почему пирит называют «золотом дураков»	1 балл		
Итого:	11 баллов		

Задание 9-4

Перед вами схема превращений веществ:

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения веществ, при этом направления превращений веществ (направления стрелок) выберите сами. Для реакций в растворах электролитов составьте ионные уравнения.

Решение:

Уравнения реакций:

- 1) $4A1 + 3O_2 = 2Al_2O_3$
- 2) $2A1 + 2NaOH + 6H_2O = 2Na[Al(OH)_4] + 3H_2$
- 3) $Al(OH)_3 + NaOH = Na[Al(OH)_4]$ $Al(OH)_3 + OH^- = [Al(OH)_4]^-$
- 4) $2Al(OH)_3 = Al_2O_3 + 3H_2O$
- 5) $Al_2O_3 + 2NaOH_{TB} = 2NaAlO_2 + H_2O$ (сплавление)
- 6) $NaAlO_2 + 4HCl = NaCl + AlCl_3 + 2H_2O$
- 7) $2Al + 3Cl_2 = 2AlCl_3$
- 8) $Na[Al(OH)_4] + 4HNO_3 = NaNO_3 + Al(NO_3)_3 + 4H_2O$ $[Al(OH)_4]^- + 4H^+ = Al^{3+} + 4H_2O$
- 9) $AlCl_3 + 3AgNO_3 = 3AgCl + Al(NO_3)_3$ $Cl^- + Ag^+ = AgCl$
- $10) \, 2Al(OH)_3 + 3H_2SO_4 = Al_2(SO_4)_3 + 6H_2O$ $Al(OH)_3 + 3H^+ = Al^{3+} + 3H_2O$
- 11) $2NaAlO_2 + 4H_2SO_4 = Na_2SO_4 + Al_2(SO_4)_3 + 4H_2O$
- 12) $Al_2(SO_4)_3 + 3Ba(NO_3)_2 = 3BaSO_4 + 2Al(NO_3)_3$ $SO_4^{2-} + Ba^{2+} = BaSO_4$

(Возможны иные уравнения реакций, удовлетворяющие условию)

Распределение по баллам к заданию 9-4

Содержание верного ответа	Баллы
Определены направления превращений	1,5 балла
Составлены молекулярные уравнения реакций №8, 11	2*1=2 балла
Составлены молекулярные уравнения реакций	10*0,5=5 баллов
Написаны уравнения реакций в ионном виде	5х0,5=2,5 балла
Итого:	11 баллов

Задание 9-5

Однажды вечером в одной из школьных лабораторий города N лаборант Иван Анатольевич обнаружил 8 склянок с растворами, этикетки от которых отклеились и валялись на полу. За короткий промежуток времени, используя только эти растворы, ему необходимо было определить, что находится в каждой склянке и вернуть этикетки на место. Отклеившиесяэтикетки: $NH_3 \cdot H_2O$, $Zn(NO_3)_2$, $Al(NO_3)_3$, $BaCl_2$, $AgNO_3$, Na_2CO_3 , Na_2SO_4 .

Восстановите ход рассуждений лаборанта при проведении анализа растворов в склянках. Решение представьте в виде таблицы с указанием цветов осадков и наблюдаемых явлений. Напишите уравнения всех возможных реакций в молекулярном и ионном видах.

Решение

1 cmenne								
	Веществ	NH_3*H_2O	$Zn(NO_3)_2$	$Al(NO_3)_3$	$BaCl_2$	$AgNO_3$	Na_2SO_4	Ī
	0							

NH ₃ *H ₂ O	Zn(OH) ₂ ↓ Белый аморфный осадок, растворим в избытке NH ₃ *H ₂ O	Al(OH)₃↓ Белый аморфный осадок, не растворим в избытке NH₃*H₂O	-	Бурый осадок (черно- коричневый) $Ag_2O\downarrow$, растворим в избытке NH_3*H_2O	-
$Zn(NO_3)_2$		-	-	-	-
Al(NO ₃) ₃ BaCl ₂				АgCl↓ Белый творожистый, растворимый в избытке NH₃*H₂O	ВаSO ₄ ↓ Белый мелкокристал лический
$AgNO_3$					Белый осадок Ag ₂ SO ₄ ↓, выпадает из концентрированных раство ров
Na ₂ SO ₄					

Уравнения реакций:

- 1) $2NH_3*H_2O + Zn(NO_3)_2 = Zn(OH)_2 \downarrow +2NH_4NO_3$ $2NH_3*H_2O + Zn^{2+} = Zn(OH)_2 \downarrow +2NH_4^+$
- 2) $Zn(OH)_2\downarrow + 2NH_3*H_2O = [Zn(NH_3)_4](OH)_2 + 2H_2O$ $Zn(OH)_2\downarrow + 2NH_3*H_2O = [Zn(NH_3)_4]^{2+} + 2OH^- + 2H_2O$
- 3) $3NH_3*H_2O + Al(NO_3)_3 = Al(OH)_3 \downarrow + 3NH_4NO_3$ $3NH_3*H_2O + Al^{3+} = Al(OH)_3 \downarrow + 3NH_4^+$
- 4) $2AgNO_3 + 2NH_3*H_2O = 2NH_4NO_3 + Ag_2O \downarrow + H_2O$ $2Ag^+ + 2NH_3*H_2O = Ag_2O \downarrow + 2NH_4^+ + H_2O$
- 5) $Ag_2O\downarrow + 4NH_3*H_2O= 2[Ag(NH_3)_2](OH) + 3H_2O$ $Ag_2O\downarrow + 4NH_3*H_2O= 2[Ag(NH_3)_2]^+ + 2OH^- + 3H_2O$
- 6) $2AgNO_3 + BaCl_2 = 2AgCl\downarrow + Ba(NO_3)_2$ $Ag^+ + Cl^- = AgCl\downarrow$
- 7) $BaCl_2 + Na_2SO_4 = BaSO_4 + 2NaCl$ $Ba^{2+} + SO_4^{2-} = BaSO_4$
- 8) $2AgNO_3 + Na_2SO_4 = 2NaNO_3 + Ag_2SO_4 \downarrow$ $2Ag^+ + SO_4^{2-} = Ag_2SO_4 \downarrow$

Распределение по баллам к заданию 9-5

Содержание верного ответа	Баллы
Правильно составлен план эксперимента (таблица)	2 балла
Описаны наблюдаемые эффекты	2 балла
Написаны уравнения реакций в молекулярном виде	8х0,5=4 балла
Написаны уравнения реакций в ионном виде	8х0,5=4 балла
Итого:	12 баллов