Муниципальный этап Всероссийской олимпиады школьников по химии 2020-2021 учебный год

Экспериментальный тур (4 часа)

10 класс

Максимальный балл – 30 баллов

Задание.

В семи пронумерованных пробирках находятся индивидуальные соли:

MnSO₄, MgSO₄, (NH₄)₂CO₃, NaHCO₃, Al₂(SO₄)₃, FeSO₄ и CuSO₄

Используя имеющиеся на столе реактивы и оборудование, определите каждую из выше перечисленных солей. Решение представьте в виде таблицы. Напишите уравнения реакций, подтверждающие открытие веществ.

Реактивы и оборудование на каждого участника

Реактивы: 1M раствор HCl, 1M раствор NaOH, H₂O(дист.).

<u>Оборудование:</u> семь пронумерованных пробирок с кристаллическими солями: MnSO₄, MgSO₄, (NH₄)₂CO₃, NaHCO₃, Al₂(SO₄)₃, FeSO₄ и CuSO₄; штатив с пробирками, спиртовка, шпатель для отбора проб, зажим для пробирок, спички.

Решение:

	MnSO ₄	MgSO ₄	$(NH_4)_2CO_3$	NaHCO ₃	$Al_2(SO_4)_3$	FeSO ₄	CuSO ₄
H_2O	p	p	p	p	p	p	p
HCl	_	_	↑CO ₂	p↑CO ₂	р	_	_
NaOH	↓буреет	↓белый	↑NH ₃	ı	↓аморфный, в избытке щёлочи растворяется	↓серо- зелёный	↓голубой

Приводим один из вариантов решения.

Определение солей начинаем с их растворения. Все соли растворяются в воде. Один из растворов голубого цвета, другой розового, все остальные растворы беспветные.

К растворам солей по очереди по каплям прибавляем раствор кислоты. Наблюдаем следующее: в двух пробирках наблюдаем вспенивание и выделение газа без цвета и запаха

В пробирке с раствором (NH₄)₂CO₃ наблюдается выделение газа:

$$(NH_4)_2CO_3 + 2HCl = 2NH_4Cl + CO_2\uparrow + H_2O(16)$$

В пробирке с раствором NaHCO₃ наблюдается выделение газа:

$$NaHCO_3 + HCl = NaCl + CO_2 \uparrow + H_2O$$
 (1 6)

В чистую пробирку наливаем раствор $(NH_4)_2CO_3$ и приливаем раствор щелочи, нагреваем.

$$(NH_4)_2CO_3 + 2NaOH = 2NH_3\uparrow + Na_2CO_3 + 2H_2O$$
 (1 6)

В чистую пробирку наливаем раствор NaHCO₃ и приливаем раствор щелочи, нагреваем, видимых изменений не наблюдаем:

$$NaHCO_3 + NaOH = Na_2CO_3 + H_2O$$

Но если соль гидрокарбонат в избытке, при нагревании соль разлагается и при этом выделяется газ без цвета и запаха:

$$2NaHCO_3 = Na_2CO_3 + H_2O + CO_2$$

В остальных пробирках видимых изменений не происходит.

С помощью кислоты и щелочи мы определили (NH₄)₂CO₃ и NaHCO₃.

Отбираем по несколько капель раствора каждой соли и переносим в чистые пробирки. Затем в каждую пробирку по каплям добавляем щелочь. Наблюдаем за эффектами реакций. Пробирки можно нагреть на спиртовке. В пробирке содержащей MnSO₄, будет выпадать бело-розовый осадок, буреющий на воздухе:

$$MnSO_4 + 2NaOH = Mn(OH)_2 \downarrow + Na_2SO_4$$
 (1 б)
 $2Mn(OH)_2 + O_2 = 2MnO(OH)_2 \downarrow$ (бурый) или
 $2Mn(OH)_2 + O_2 = 2MnO_2 + 2H_2O$ (1 б)

В пробирке, содержащей MgSO₄, будет наблюдаться выпадение белого осадка, нерастворимого в избытке щёлочи:

$$MgSO_4 + 2NaOH = Mg(OH)_2 \downarrow + Na_2SO_4$$
 (1 6)

В пробирке, содержащей $Al_2(SO_4)_3$ будет наблюдаться выпадение студенистого осадка белого цвета, в избытке щёлочи происходит растворение осадка:

$$Al_2(SO_4)_3 + 6NaOH = 2Al(OH)_3 \downarrow + 3Na_2SO_4$$
 (1 6)
 $Al(OH)_3 + NaOH = Na[Al(OH)_4]$

В пробирке, содержащей FeSO₄, будет наблюдаться выпадение серо-зелёного осадка:

$$FeSO_4 + 2NaOH = Fe(OH)_2 \downarrow + Na_2SO_4$$
 (1 6)

В пробирке, содержащей CuSO₄, будет наблюдаться выпадение голубого осадка:

$$CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow + Na_2SO_4$$
 (1 6)

Таким образом, мы определили каждую из солей, находящихся в семи пробирках.

Система оценивания:

За определение солей MnSO₄, MgSO₄, (NH₄)₂CO₃, NaHCO₃, Al₂(SO₄)₃, FeSO₄ и CuSO₄ по 2 балла – всего 14 баллов.

За таблицу – 5 баллов.

За уравнения реакций – 11 баллов (по 1 баллу за каждое).

Замечание для членов Жюри:

Сульфат марганца (II) и сульфат меди (II) отличаются от других по цвету (розовый и голубой). Если идентификация проведена только по этому признаку, без проведения соответствующих реакций, то она оценивается в 1 балл.

Максимальный балл - 30 баллов