Всероссийская олимпиада школьников по технологии. Направление «Техника, технологии и техническое творчество» 2019–2020 уч. г. Муниципальный этап. 9 класс

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ТЕХНОЛОГИИ 2020–2021 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП

9 класс

Направление «Культура дома, дизайн и технологии»

Практическая работа 2 Выполнение фигурной закрепки

В одежде принято закреплять углы карманов, разрез на юбке, концы складок, их делают из кусочка кожи, замши, но чаще всего выполняют прочными нитками. Помимо своего практического назначения, такие закрепки выполняют и декоративную роль, как украшение детали. Величина фигурной закрепки может быть разной, а вот форма – непременно равносторонний треугольник.

Задание

- 1. Внимательно рассмотрите предложенный вариант фигурной закрепки.
- 2. Подготовьте ткань и нитки к работе.
- 3. Выполните закрепку в соответствии с предложенной схемой.
- 4. Проведите самоконтроль готового образца.

Материалы и инструменты: ткань сукно или плотная плательная, размер ткани 10 × 10 см, нитки мулине, ручные иглы, напёрсток, ножницы.

Всероссийская олимпиада школьников по технологии. Направление «Техника, технологии и техническое творчество» 2019–2020 уч. г. Муниципальный этап. 9 класс

Всероссийская олимпиада школьников по технологии 2020-2021 уч. г.

Муниципальный этап. 9 класс

Выполнение фигурной закрепки

№ п/п	Описание операции	Изображение
1	Наметить место расположения и размер фигурной закрепки (нарисовать мелом равносторонний треугольник со сторонами 2 см)	2 см
2	Сметочным швом выполнить треугольник по контуру, как показано на рисунке. Длина стежка 5–7 мм.	5-7 мм
3	Затем нитка кладётся с левого угла треугольника по направлению вверх. Стежки должны быть плотными, ровными и обязательно закрывать линии нарисованного треугольника. Нитки располагают сплошным застилом. Итак, направление, стежков: слева вверх – иголка справа налево, – вправо вниз – иголка справа налево.	
4	Готовая закрепка.	

Всероссийская олимпиада школьников по технологии. Направление «Техника, технологии и техническое творчество» 2019–2020 уч. г. Муниципальный этап. 9 класс

Место прикрепления работы

Шифр_____

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ТЕХНОЛОГИИ В НАПРАВЛЕНИИ «РОБОТОТЕХНИКА» 2020–2021 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП 9 класс

ПРАКТИЧЕСКИЙ ТУР

Вам необходимо собрать устройство и написать программу для умного трёхклавишного выключателя с лампой освещения.

Материалы и оборудование

- Arduino совместимый контроллер.
- Макетная плата 1 шт.
- Светодиод 1 шт.
- Резистор 220 Ом 1 шт.
- Тактовые кнопки 3 шт.
- Комплект проводов.
- Компьютер или ноутбук с установленным программным обеспечением.

Роль клавиш в вашем устройстве будут играть тактовые кнопки, а в качестве светильника можно использовать светодиод.

Задание

1. Соберите устройство и напишите программу для

трёхклавишного выключателя, который имеет следующие функции: •

одна клавиша выключает и включает светильник

- две другие плавно изменяют яркость при многократном нажатии или удержании одна клавиша увеличивает, а другая уменьшает
- светильник не должен изменять яркость после выключения и повторного включения
- кнопки изменения яркости не должны изменять состояние светодиода, если светильник выключен
- долгое нажатие (продолжительность больше 2 секунд) на клавишу включения/выключения переводит лампу в максимально яркий режим.
 Функция должна срабатывать независимо от текущего состояния светильника.
- 2. Начертите принципиальную схему устройства.

Схему можно собрать на макетной плате, либо смонтировать любым другим способом. Язык разработки не регламентируется. В качестве начальной яркости светодиода примите 50 % от максимально возможной.

Проверка

Выполнив последовательно следующие действия, вы сможете проверить работу своего умного выключателя.

N⁰	Действие	Состояние
п/п		светильника
1	Одно нажатие на кнопку включения / выключения	Включён
2	Одно нажатие на кнопку включения / выключения	Выключен
3	Одно нажатие на кнопку включения / выключения	Включён
4	Нажатие (удержание или многократное нажатие)	Яркость плавно
	на кнопку уменьшения яркости	уменьшается
5	Нажатие (удержание или многократное нажатие)	Яркость плавно
	на кнопку увеличение яркости	увеличивается
6	Добейтесь минимально возможной яркости при	Горит с минимальной
	помощи кнопки уменьшения яркости	яркостью
7	Одно нажатие на кнопку включения / выключения	Выключен
8	Одно нажатие на кнопку включения / выключения	Горит с минимальной
		яркостью
9	Долгое нажатие на кнопку включения /	Горит с максимальной
	выключения	яркостью

Продолжительность одной попытки 3 минуты.

В зачёт идет результат лучшей попытки.

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ТЕХНОЛОГИИ 2020–2021 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП

Направление «Культура дома, дизайн и технологии» Направление «Техника, технологии и техническое творчество» 9 класс

Практическое задание по 3D-моделированию

Задание: по предложенному образцу разработайте эскиз изделия, создайте 3Dмодель изделия в системе автоматизированного проектирования (САПР), подготовьте проект для печати прототипа на 3D-принтере, выполните чертёж изделия.

Образец: «Накладка для магнита».

Рис. 1 Образец изделия «Накладка для магнита»

Габаритные размеры изделия: не более 50 × 50 × 5 мм (размеры основания и толщина накладки соответственно).

Прочие размеры и требования:

основание имитирует зубчатое колесо, зубьев 12 или более;

в основании сделано углубление с рельефными элементами: окружность, многоугольник, текст (на образце это «3D», можно иной, например, «№ 1»); хотя бы один рельефный элемент имеет скругление;

один элемент повторяется многократно, симметрично относительно центра (не менее 6 раз, на образце это полусфера);

все элементы ступенчаты, соседние не одинаковы по глубине; размеры и форму накладки разработайте самостоятельно.

Дизайн:

Всероссийская олимпиада школьников по технологии. Направление «Техника, технологии и техническое творчество» 2019–2020 уч. г. Школьный этап. 7-8 классы

наружный край – это контур жёсткости, он наиболее толстый; используйте произвольный цвет для модели, отличный от базового серого; продумайте эстетику формы изделия, постарайтесь сделать его контрастным, не перегруженным элементами, сбалансированным композиционно.

Рекомендации:

При разработке модели следует учесть погрешность печати (при конструировании отверстий, пазов и выступов). Если в задании требуется произвести 3D-печать изделия с сочетающимися деталями, то для уточнения зазоров и усадки рекомендуется напечатать пробник (например, пластину с отверстием и выступом нужных размеров).

При подготовке 3D-модели к печати пластиковым прутком следует размещать деталь в программе-слайсере на наибольшем из плоских её оснований, поскольку 3D-принтер наращивает модель снизу вверх.

Оптимальное время разработки модели – половина всего отведённого на практику времени, не забудьте про итоговые чертежи изделия! Не спешите, но помните, что верный расчёт времени поощряется.

Порядок выполнения работы:

1) На листе чертёжной или писчей бумаги разработайте эскиз (или технический рисунок) прототипа для последующего моделирования с указанием габаритных размеров, подпишите лист своим персональным номером участника олимпиады.

2) Создайте личную папку в указанном организаторами месте (на рабочем столе компьютера или сетевом диске) с названием по шаблону:

Zadanie_номеручастника_rosolimp

пример:

Zadanie_1234567_rosolimp 3) Выполните

электронную 3D-модель изделия с использованием программы САПР, например, Компас 3D, Autodesk Inventor, Autodesk Fusion 360,

Tinkercad, SketchUp, Blender и т. п. (если изделие в задании многодетальное, следует создать отдельные модели каждой детали и сборку – в отдельных файлах).

4) Сохраните в личную папку файл проекта в формате среды разработки (например, в Компас 3D это формат m3d) и в формате STEP с названием по тому же шаблону: zadanie_номеручастника_rosolimp.тип пример:

zadanie_1234567_rosolimp.m3d zadanie_1234567_rosolimp.step

Если изделие многодетальное (если требуется по заданию), в названия файлов следует добавлять номер детали, например: zadanie_1234567_rosolimp_det2.m3d

zadanie_1234567_rosolimp_det2.step

Всероссийская олимпиада школьников по технологии. Направление «Техника, технологии и техническое творчество» 2019–2020 уч. г. Школьный этап. 7-8 классы

В название файла сборки (если требуется по заданию) следует внести соответствующее указание, например:

zadanie_1234567_rosolimp_sbor.a3d

5) Экспортируйте электронные 3D-модели изделия в формат .stl также в личную папку, следуя тому же шаблону имени (пример: zadanie_1234567_rosolimp.stl).

6) Подготовьте модель для печати прототипа на 3D-принтере в программе-слайсере (CURA, Polygon или иной), выставив необходимые настройки печати в соответствии с параметрами печати по умолчанию¹ или особо указанными организаторами; необходимость поддержек и контуров прилипания определите самостоятельно.

7) Выполните скриншот проекта в слайсере, демонстрирующий верные настройки печати, сохраните его также в личную папку (пример: zadanie_1234567_rosolimp.jpg).

8) Сохраните файл проекта для печати в формате программы-слайсера, следуя всё тому же шаблону имени (пример: zadanie_1234567_rosolimp.gcode).

9) В программе САПР или вручную на листе чертёжной или писчей бумаги оформите чертёж изделия, соблюдая требования ГОСТ ЕСКД, в необходимом количестве взаимосвязанных проекций, с проставлением размеров, оформлением рамки и основной надписи и т. д. (если выполняете чертёж на компьютере, сохраните его в личную папку в формате программы и в формате **PDF** с соответствующим именем).

10) Продемонстрируйте и сдайте организаторам все созданные материалы:

эскиз прототипа (выполненный от руки на бумаге);

личную папку с файлами 3D-модели в форматах step, stl, модель в формате среды разработки, проект изделия в формате слайсера;

итоговые чертежи изделия (распечатку электронных чертежей формата PDF осуществляют организаторы).

По окончании выполнения заданий не забудьте навести порядок на рабочем месте.

Успешной работы!

¹ параметры печати по умолчанию обычно выставлены в программе-слайсере: модель 3D-принтера, диаметр сопла, температура печати, толщина слоя печати, заполнение и т.д.