

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Решения

Предмет: Физика

Класс: 10, вариант 1

Задача 1 (8 баллов). Небольшой камень бросили с края площадки, находящейся на высоте h=20 м от поверхности земли под некоторым углом к горизонту. Время полета камня вверх до максимальной высоты на $\Delta t=1$ с меньше, чем время его падения вниз до столкновения с землей. Сколько всего времени двигался камень? Ускорение свободного падения g=10 м/с². Сопротивлением воздуха пренебречь.

Otbet.
$$T = \frac{2h}{g\Delta t} = 4 \text{ c.}$$

Решение.

Обозначим h_{max} — максимальную высоту подъема камня, t_1 — время движения камня вверх до максимальной высоты, t_2 — время падения с точки максимального подъема до земли. Тогда $h_{max} - h = \frac{gt_1^2}{2}$, $h_{max} = \frac{gt_2^2}{2}$. Вычитая из второго уравнения первое, получим

$$h = \frac{gt_2^2}{2} - \frac{gt_1^2}{2} = \frac{g(t_2 - t_1)(t_2 + t_1)}{2} = \frac{g}{2}\Delta t \cdot T \Rightarrow T = \frac{2h}{g\Delta t} = \frac{2 \cdot 20}{10 \cdot 1} = 4 \text{ c.}$$

Возможны другие (альтернативные) решения задачи. Например, можно выразить время подъема t_1 и полное время движения T через вертикальную проекцию начальной скорости v_{0y} , а затем найти v_{0y} .

Критерии оценивания задачи 1.

	Элементы решения	Баллы (макс. 8 баллов)
1	Записана формула для времени подьема t_1	+1 балла
2	Записана формула для нахождения t_2 (или как альтернатива	+2 балла
	формула для полного времени движения T)	
3	Записаны все уравнения, необходимые для решения задачи	+2 балла
4	Проделаны необходимые алгебраические преобразования	+2 балла
5	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 2 (8 баллов). Для исследования некоторой планеты по круговой орбите вокруг нее с постоянной скоростью движется искусственный спутник, совершая полный оборот за время $T_1 = 4$ часа. В результате маневра спутник переходит на другую круговую орбиту, на которой его скорость увеличилась в 2 раза. Как и на сколько часов изменился период обращения спутника по новой орбите?

Ответ. Период уменьшится на $\Delta T = 3.5$ ч.

Решение.

1)Запишем уравнения движения спутника по круговой орбите радиуса r.

 $G\frac{mM}{r^2} = \frac{mv^2}{r}$, где m — масса спутника, M — масса планеты, v — скорость движения спутника по орбите.

2) Связь скорости v и периода обращения T. $v = \frac{2\pi r}{T}$.

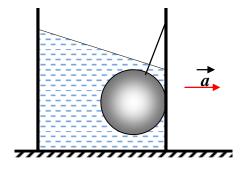
Из этих уравнений
$$\Rightarrow T = \frac{2\pi GM}{v^3}$$

Если скорость v увеличится в 2 раза, то период обращения уменьшится в 8 раз. Т.е период обращения станет равным $T_2 = \frac{T_1}{8} = 0.5$ ч. Значит, период уменьшится на $\Delta T = 3.5$ ч.

Критерии оценивания задачи 2.

	Элементы решения	Баллы (макс. 8 баллов)
1	Записана формула связи скорости и периода (или любая дру-	+1 балла
	гая аналогичная формула кинематики движения по окружн.)	
2	Записан закон всемирного тяготения	+1 балла
3	Записан второй закон Ньютона при движении по окружности	+2 балла
4	Проделаны необходимые алгебраические преобразования	+2 балла
5	Указано, что период уменьшился	+1 балл
6	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 3 (14 баллов). Сосуд, имеющий форму прямоугольной призмы, заполнен водой. К боковой стенке сосуда подвешен на нити железный шарик, диаметр которого равен длине нити (см. рисунок). Трение шарика о стенку пренебрежимо мало. Сосуд движется с постоянным ускорением по горизонтальной поверхности, шарик при этом не касается дна сосуда и остается полностью погруженным в воду. При каких значениях ускорения а шарик не будет давить на стенку?

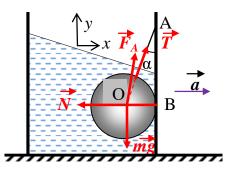


Плотность воды $\rho_{\rm B}=10^3$ кг/м³, плотность железа $\rho_{\rm w}=7,9\cdot10^3$ кг/м³. Ускорение свободного падения g=10 м/с².

Otbet.
$$a \ge \frac{g}{2\sqrt{2}} = 3.5 \text{ m/c}^2$$
.

Решение.

1) Силы, действующие на шарик, показаны на рисунке, и проходят через центр шара. Если бы сила натяжения нити \vec{T} не проходила бы через центр О, то относительно оси, проходящей через точку О, эта единственная сила создавала бы ненулевой вращательный момент и шар бы вращался до тех пор, пока положение нити, не оказалось бы проходящим через центр шара.



- 2) Сила Архимеда, в случае, когда сосуд движется с горизонтальным ускорением \vec{a} , направлена не вертикально, а перпендикулярно свободной поверхности жидкости и определяется формулой $\vec{F}_A = \rho_s V(\vec{a} \vec{g})$, где $\rho_{\rm B}$ плотность воды, V объём шара.
- 3) Предположим, что шарик давит на стенку, тогда можно записать уравнения динамики шарика в проекциях на оси координат.

$$\begin{cases} x: T \sin \alpha + F_{Ax} - N = ma, \\ T \cos \alpha + F_{Ay} - mg = 0. \end{cases}$$

Проекции силы Архимеда на оси координат равны $F_{Ax}=\rho_{s}Va$ и $F_{Ay}=\rho_{s}Vg$.

Решаем полученную систему. $\Rightarrow (m - \rho_e V)g \operatorname{tg} \alpha = (m - \rho_e V)a + N$.

Т.к. плотность шарика больше плотности воды, то $m > \rho_e V$. Условие того, что шар давит на стенку: N > 0. Тогда, чтобы шар давил на стену в процессе движения, должно выполняться неравенство $N = (m - \rho_e V)(g \operatorname{tg} \alpha - a) > 0$. Откуда, с учетом того, что $m > \rho_e V$, \Rightarrow

 $a < g \operatorname{tg} \alpha$. Соответственно, чтобы шарик не давил на стенку сосуда, должно быть $a \ge g \operatorname{tg} \alpha$.

4) Из геометрии получим значение $\lg \alpha$. По условию в треугольнике ОАВ катет OB=R , гипотенуза OA=3R , тогда второй катет $AB=\sqrt{(3R)^2-R^2}=2R\sqrt{2}$. \Rightarrow $\lg \alpha = \frac{OB}{AB} = \frac{1}{2\sqrt{2}}$.

Окончательно получим $a \ge \frac{g}{2\sqrt{2}} = 3,54$ м/с².

Критерии оценивания задачи 3.

	Элементы решения	Баллы (макс. 14 баллов)
1	Сделан рисунок, с правильными направлениями всех сил	+1 балл
2	Пояснено, почему сила натяжения нити проходит через	+2 балла
	центр шара	
3	Указано, что сила Архимеда имеет не только вертикальную,	+2 балла
	но и горизонтальную составляющую и правильно записаны	
	формулы для силы Архимеда	
4	Записаны уравнения динамики для шара	+2 балла (по 1 баллу за
4	Записаны уравнения динамики для шара	+2 балла (по 1 баллу за каждую формулу)
5	Записаны уравнения динамики для шара Получено значение угла наклона нити (или любой из триго-	`
	-	каждую формулу)
	Получено значение угла наклона нити (или любой из триго-	каждую формулу)
5	Получено значение угла наклона нити (или любой из тригонометрических функций этого угла)	каждую формулу) +2 балла

Задача 4 (14 баллов). С v=1 моль идеального одноатомного газа совершают некоторый политропный процесс, в результате которого газ переходит из состояния с начальными давлением $p_1=4\cdot 10^6$ Па и абсолютной температурой $T_1=400$ К в состояние с давлением $p_2=6\cdot 10^6$ Па и абсолютной температурой $T_2=900$ К. Какое количество тепла получает газ в этом процессе? Связь давления p и объема V в политропном процессе описывается формулой $pV^n=const$, где показатель политропы n — некоторое действительное число. Универсальная газовая постоянная R=8,31 Дж/(моль·К).

Ответ. $Q = 2\nu R(T_2 - T_1) = 8{,}31$ кДж.

Решение.

1) Найдем показатель политропы п. Для этого запишем уравнение политропного процесса и уравнение состояния идеального газа, и найдем связь давления и температуры для политропного процесса.

$$\begin{cases} pV^n = c = const, \\ pV = vRT. \end{cases} \Rightarrow p^{1-n}T^n = const, \Rightarrow p_1^{1-n}T_1^n = p_2^{1-n}T_2^n, \Rightarrow \left(\frac{p_1}{p_2}\right)^{1-n} = \left(\frac{T_2}{T_1}\right)^n$$

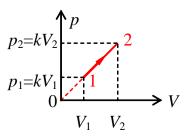
Подставим в последнюю формулу числовые значения. Тогда

$$\left(\frac{4\cdot 10^6}{6\cdot 10^6}\right)^{1-n} = \left(\frac{900}{400}\right)^n, \Rightarrow \left(\frac{2}{3}\right)^{1-n} = \left(\frac{9}{4}\right)^n, \Rightarrow 1-n = -2n, \Rightarrow n = -1.$$

Таким образом, заданный процесс имеет вид p = kV, где k = const (см. рисунок).

2) Тогда работа газа равна
$$A = \frac{1}{2}(p_1 + p_2)(V_2 - V_1) = \frac{1}{2}k\left(V_2^2 - V_1^2\right).$$

Воспользуемся уравнениями состояний 1 и 2, которые запишем в виде: $p_1V_1=kV_1^2=\nu RT_1$ и $p_2V_2=kV_2^2=\nu RT_2$. $\Rightarrow A=\frac{1}{2}\nu R(T_2-T_1)$.



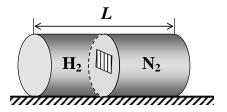
Изменение внутренней энергии $\Delta U = \frac{3}{2} \nu R (T_2 - T_1)$.

Тогда $Q = \Delta U + A = 2\nu R(T_2 - T_1) = 2 \cdot 1 \cdot 8,31 \cdot (900 - 400) = 8,31$ кДж.

Критерии оценивания задачи 4.

	Элементы решения	Баллы (макс. 14 баллов)
1	Записано уравнение состояния идеального газа	+1 балл
2	Записана формула первого закона Термодинамики	+1 балл
3	Записана формула для изменения внутренней энергии	+1 балл
4	Получено значение показателя политропы п	+4 балла
5	Получено выражения для работы	+4 балла
6	Получено выражение для расчета Q	+2 балла
7	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 5 (18 баллов). На гладком горизонтальном столе покоится цилиндрический сосуд длиной L=36 см. Сосуд разделен на две равные части неподвижной перегородкой, в которой имеется полупроницаемая мембрана; полупроницаемая мембрана пропускает молекулы водорода и не пропускает молекулы азота (см. рисунок).



Вначале мембрана закрыта, а сосуд заполнен в левой части водородом, а в правой — азотом. После открытия мембраны и установления теплового равновесия, давление в правой части сосуда оказалось в n=1,5 раза больше, чем в левой. В какую сторону и на какое расстояние сдвинется при этом сосуд? Массой сосуда и перегородки пренебречь. Температуру газов за все время наблюдения считать одинаковой и неизменной. Молярные массы водорода и азота равны соответственно $\mu_{\rm B}=2$ г/моль, $\mu_{\rm a}=28$ г/моль.

Ответ. Сосуд сместится влево на
$$s = \frac{L}{4\left(1 + \frac{(n-1)\mu_a}{2\mu_e}\right)} = 2$$
 см.

Решение

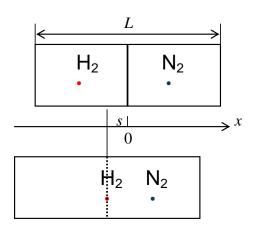
1) Обозначим V – объём сосуда, m_1 – масса водорода H_2 , m_2 – масса азота N_2 . Вначале центр масс водорода и азота находился посредине каждой половинки сосуда. Тогда

центр масс системы имеет координату (см. первый рисунок) $x_{u,m}^{Haq_1} = \frac{m_1\left(-\frac{L}{4}\right) + m_2\frac{L}{4}}{m_1 + m_2}$.

После открытия мембраны водород займет весь сосуд, и его центр масс будет находиться посредине сосуда, а положение центра масс азота не изменится, при этом будем считать, что сосуд сдвинулся влево на s (см. второй рисунок). При этом положение центра системы определяется

. На систему не действуют внешние силы в горизонтальном направле-

нии, поэтому
$$x_{u.м.}^{\text{кон.}} = x_{u.м.}^{\text{нач.}}. \Rightarrow s = \frac{m_1 L}{4(m_1 + m_2)}$$
.

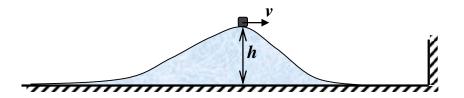


2). Чтобы найти отношение масс газов, посчитаем давления в правой и в левой частях сосуда после открытия мембраны и установления теплового равновесия. Давление в левой части сосуда равно $p_{neg.}=p_{e}=\frac{m_{1}RT}{\mu_{e}V}$, а в правой — $p_{np.}=p_{e}+p_{a}=\frac{m_{1}RT}{\mu_{e}V}+\frac{2m_{2}RT}{\mu_{a}V}$. По условию $\frac{p_{np.}}{p_{neg.}}=n=1,5$. $\Rightarrow \frac{m_{2}}{m_{1}}=\frac{(n-1)\mu_{a}}{2\mu_{e}}=\frac{0,5\cdot28}{2\cdot2}=3,5$. Тогда $s=\frac{L}{4\left(1+\frac{m_{2}}{m_{1}}\right)}=\frac{36}{4\cdot(1+3,5)}=2$ см.

Критерии оценивания задачи 5.

	Элементы решения	Баллы (макс. 18 баллов)
1	Получены выражения для парциальных давлений и водорода	+2 балла (по 1 баллу за
	и азота	каждую формулу)
2	Записаны формулы для давления в левой и правой частях со-	+2 балла (по 1 баллу за
	суда	каждую формулу)
3	Записаны формулы для начального и конечного положений	+2 балла (по 1 баллу за
	центра масс системы	каждую формулу)
4	Указано, что центр масс системы не смещается	+1 балла
5	Получена формула для смещения сосуда s	+3 балла
6	Получено отношение масс азота и водорода	+4 балла
7	Сделаны необходимые алгебраические преобразования и по-	+2 балла
	лучена окончательная формула для смещения s	
8	Указано, что сосуд сместился влево	+1 балла
9	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 6 (18 баллов). На горизонтальной поверхности льда находится ледяная горка высотой h=0,6 м, которая может скользить по поверхности льда (см. рисунок). На вершине горки покоится маленькая шайба. Масса горки в k=3 раза больше массы шайбы. Вначале горка и шайба неподвижны. Трение пренебрежимо мало. Какую минимальную горизонтально направленную скорость необходимо сообщить шайбе, чтобы она после того, как соскользнет с горки и ударится упруго о вертикальный бортик, смогла бы подняться на вершину горки при обратном движении? Считать, что при движении по горке шайба не отрывается от горки, все движения шайбы и горки по горизонтальной поверхности происходят вдоль одной прямой. Ускорение свободного падения g=10 м/с².



Otbet.
$$v = \sqrt{\frac{gh}{3}} = 1,4 \text{ m/c}.$$

Решение.

Обозначим массу шайбы m, тогда масса горки 3m. Когда шайба съезжает с горки, она приобретает скорость v_1 , горка при этом движется в противоположную сторону со скоростью v_2 . Эти скорости можно найти из законов сохранения энергии и проекции импульса на горизонтальную ось. После удара о бортик, скорость шайбы поменяет направление, но не модуль. Поэтому чтобы оказаться на вершине снова должно быть $v_1 > v_2$. При этом, когда шайба снова окажется на вершине скорости шайбы и горки относительно земли должны быть одинаковыми (обозначим эту скорость u). Для нахождения u также применяем законы сохранения импульса и энергии. В результате получим систему.

$$\begin{cases} \frac{mv^{2}}{2} + mgh = \frac{mv_{1}^{2}}{2} + \frac{3mv_{2}^{2}}{2}, \\ mv = mv_{1} - 3mv_{2}, \\ \frac{mv_{1}^{2}}{2} + \frac{3mv_{2}^{2}}{2} = \frac{4mu^{2}}{2} + mgh, \\ mv_{1} + 3mv_{2} = 4mu. \end{cases} \Rightarrow \begin{cases} v^{2} + 2gh = v_{1}^{2} + 3v_{2}^{2}, & (1) \\ 4u^{2} + 2gh = v_{1}^{2} + 3v_{2}^{2}, & (2) \\ v = v_{1} - 3v_{2}, & (3) \\ 4u = v_{1} + 3v_{2}. & (4) \end{cases}$$

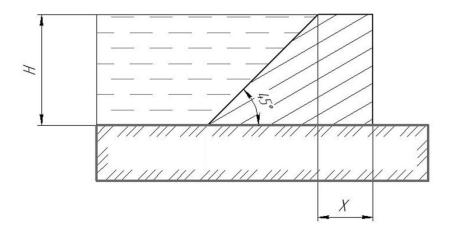
Из (1) и (2) получим $u=\frac{v}{2}$, затем из (3) и (4) $\Rightarrow v_1=\frac{3v}{2},\ v_2=\frac{v}{6}$. Подставим найденные значения v_1 и v_2 в уравнение (1), получим $v=\sqrt{\frac{gh}{3}}=\sqrt{\frac{10\cdot 0,6}{3}}=1,4$ м/с.

Критерии оценивания задачи 6.

	Элементы решения	Баллы (макс. 18 баллов)
1	Записаны уравнения законов сохранения энергии и импульса	+8 баллов (по 2 балла
	в обоих случаях	за каждое уравнение)
2	Указано, что при упругом отражении от бортика модуль ско-	+1 балла
	рости сохранится, изменится только направление	
3	Есть понимание, что во втором случае, когда шайба на вер-	+2 балла
	шине горки, скорости горки и шайбы равны	
4	Проделаны необходимые алгебраические преобразования	+6 баллов
5	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

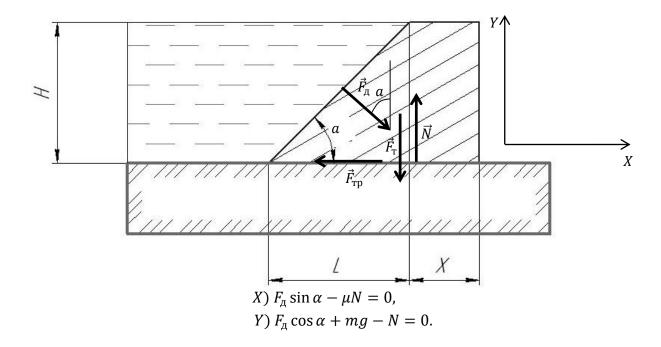
Ситуационная задача

Гравитационная плотина — это сооружение, преграждающее путь воде, удерживаемое на месте только силой трения между основанием конструкции и опорной поверхностью. Рассматриваемая плотина, горизонтальной протяженностью a=1 м, выполнена из бетона, имеет поперечное сечение в форме трапеции, "мокрая" стенка которой наклонена под углом 45 градусов к горизонту, а "сухая" стенка вертикальная. Коэффициент трения между конструкцией и опорной поверхностью $\mu=0.25$, высота столба жидкости, равная высоте плотины, H=50 м, плотность бетона $\rho_6=2200$ кг/м³, плотность воды $\rho_{\rm B}=1000$ кг/м³. Найдите минимальную длину малого основания плотины X, обеспечивающую её неподвижность.



Решение:

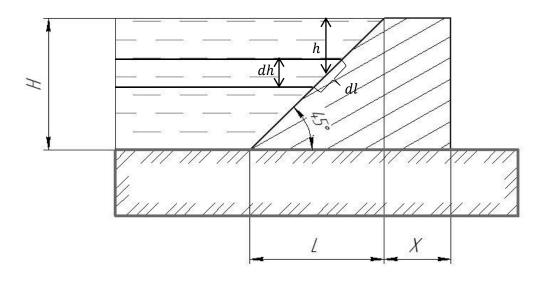
Запишем условие равновесия плотины в проекциях на горизонтальную и вертикальную ось.



Найдем полную силу давления воды на наклонную стенку плотины $F_{\rm д}$. Давление воды на глубине h

$$p = \rho_{\scriptscriptstyle \rm B} g h$$

Слой воды толщиной dh давит на участок шириной dl



$$dl = \frac{dh}{\sin \alpha}$$

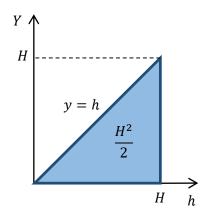
с силой

$$dF_{\!\scriptscriptstyle
m I} = pds =
ho_{\scriptscriptstyle
m B}gha \cdot dl =
ho_{\scriptscriptstyle
m B}gha rac{dh}{\sin lpha}$$

тогда полная сила давления

$$F_{\mu} = \sum_{h=0}^{H} \rho_{\text{B}} g h a \frac{dh}{\sin \alpha} = \frac{\rho_{\text{B}} g a}{\sin \alpha} \sum_{h=0}^{H} h dh.$$
$$\sum_{h=0}^{H} h dh = \frac{H^2}{2}.$$

Также можно решить графически — как площадь фигуры, ограниченной графиком функции y(h) = h.



Таким образом, полная сила давления воды на поверхность плотины

$$F_{\rm M} = \frac{\rho_{\rm B} g \alpha H^2}{2 \sin \alpha}$$

Решая систему, находим массу

$$m = \frac{\rho_{\rm B} a H^2}{2\mu} (1 - \mu(ctg\alpha)).$$

С другой стороны, масса плотины

$$m = \rho_6 V = \rho_6 a H \frac{(L+2X)}{2}.$$

Отсюда, учитывая, что L=H ctg α ,

$$X = rac{H}{2} \Big(rac{
ho_{\mathrm{B}}}{
ho_{\mathrm{6}}} \Big(rac{1 - \mu c \mathrm{tg} \, lpha}{\mu} \Big) - \mathrm{ctg} \, lpha \Big) = 9$$
,1 м.

Ответ: минимальная длина малого основания плотины X = 9,1 м.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Критерии оценивания олимпиадной работы

Профиль: Физика («Профессор Жуковский»)

Предмет: Физика **Класс:** 10, вариант 1

Задание 1 (максимальная оценка 8 б.)

Критерий (указать балл по каждому критерию)	Макс. балл
Записана формула для времени подьема t1	1
Записана формула для нахождения t2 (или как альтернатива формула для полного времени движения T)	2
Записаны все уравнения, необходимые для решения задачи	2
Проделаны необходимые алгебраические преобразования	2
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 2 (максимальная оценка 8 б.)

	Макс.
Критерий (указать балл по каждому критерию)	балл
Записана формула связи скорости и периода (или любая другая аналогичная формула кинематики	1
движения по окружн.)	
Записан закон всемирного тяготения	1
Записан второй закон Ньютона при движении по окружности	2
Проделаны необходимые алгебраические преобразования	2
Указано, что период уменьшился	1
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 3 (максимальная оценка 14 б.)

Критерий (указать балл по каждому критерию)	Макс. балл
Сделан рисунок, с правильными направлениями всех сил	1
Пояснено, почему сила натяжения нити проходит через центр шара	2
Указано, что сила Архимеда имеет не только вертикальную, но и горизонтальную составляющую и	2
правильно записаны формулы для силы Архимеда	
Записаны уравнения динамики для шара	2
Получено значение угла наклона нити (или любой из тригонометрических функций этого угла)	2
Проделаны необходимые алгебраические преобразования	4
Сделаны подстановки числовых значений и получен правильный ответ (в виде неравенства)	1

Задание 4 (максимальная оценка 14 б.)

	Макс.
Критерий (указать балл по каждому критерию)	балл
Записано уравнение состояния идеального газа	1
Записана формула первого закона Термодинамики	1
Записана формула для изменения внутренней энергии	1
Получено значение показателя политропы п	4
Получено выражения для работы	4
Получено выражение для расчета Q	2
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 5 (максимальная оценка 18 б.)

	Макс.
Критерий (указать балл по каждому критерию)	балл
Получены выражения для парциальных давлений гелия (в начальном и конечном состояниях) и кис-	3
лорода	
Записаны формулы для давления в левой части сосуда в начальном и конечном состояниях	2
Записаны формулы для начального и конечного положений центра масс системы	2
Указано, что центр масс системы не смещается	1
Получена формула для смещения сосуда s	3
Получено отношение масс азота и водорода	3
Сделаны необходимые алгебраические преобразования и получена окончательная формула для смеще-	2
ния ѕ	
Указано, что сосуд сместился влево	1
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 6 (максимальная оценка 18 б.)

Критерий (указать балл по каждому критерию)	Макс. балл
Записаны уравнения законов сохранения энергии и импульса в обоих случаях	8
Указано, что при упругом отражении от бортика модуль скорости сохранится, изменится только на-	1
правление	
Есть понимание, что во втором случае, когда шайба на вершине горки, скорости горки и шайбы равны	2
Проделаны необходимые алгебраические преобразования	6
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание С (максимальная оценка 20 б.)

Критерий (указать балл по каждому критерию)	Макс. балл
Сформулирована расчётная схема (в том числе, графически), выделены и правильно формализованы	5
все необходимые физические законы	
Составлена система уравнений и математическая модель	5
Верно учтены технические параметры, характеристики и ограничения	5
Проведены расчеты, получен верный ответ, разумный с точки зрения физического смысла	5

Профиль: Физика («Профессор Жуковский»)

Предмет: Физика **Класс:** 10, вариант 2

Решения

Задача 1 (8 баллов). Небольшой камень бросили с отвесного обрыва под некоторым углом к горизонту. Камень, двигаясь по параболе, упал на поверхность земли спустя T=8 с. При этом камень поднимался до верхней точки траектории на $\Delta t=2$ с меньше, чем он двигался вниз от вершины параболы до поверхности земли. С какой высоты от поверхности земли был брошен камень? Ускорение свободного падения g=10 м/с². Сопротивлением воздуха пренебречь.

Otbet.
$$h = \frac{g}{2} \Delta t \cdot T = 80 \text{ M}.$$

Решение.

Обозначим h_{max} — максимальную высоту подъема камня, t_1 — время движения камня вверх до максимальной высоты, t_2 — время падения с точки максимального подъема до земли. Тогда $h_{max} - h = \frac{gt_1^2}{2}$, $h_{max} = \frac{gt_2^2}{2}$. Вычитая из второго уравнения первое, получим $at^2 - at^2 - a(t_1 - t_2)(t_1 + t_2)$, $a_{max} = \frac{10.8.2}{2}$

$$h = \frac{gt_2^2}{2} - \frac{gt_1^2}{2} = \frac{g(t_2 - t_1)(t_2 + t_1)}{2} = \frac{g}{2}\Delta t \cdot T = \frac{10 \cdot 8 \cdot 2}{2} = 80 \text{ M}.$$

Возможны другие (альтернативные) решения задачи. Например, можно выразить время подъема t_1 и полное время движения T через вертикальную проекцию начальной скорости v_{0y} , а затем найти v_{0y} .

Критерии оценивания задачи 1.

	Элементы решения	Баллы (макс. 8 баллов)
1	Записана формула для времени подьема t_1	+1 балла
2	Записана формула для нахождения t_2 (или как альтернатива	+2 балла
	формула для полного времени движения T)	
3	Записаны все уравнения, необходимые для решения задачи	+2 балла
4	Проделаны необходимые алгебраические преобразования	+2 балла
5	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 2 (8 баллов). Для исследования некоторой планеты по круговой орбите вокруг нее с постоянной скоростью v=4 км/с движется искусственный спутник, совершая полный оборот вокруг планеты за время T=10 часов. Радиус планеты R=6000 км. Чему равно ускорение свободного падения на поверхности планеты?

Otbet.
$$g = \frac{Tv^3}{2\pi R^2} = 10,2 \text{ m/c}^2.$$

Решение.

1) Запишем уравнения движения спутника по круговой орбите радиуса $\it r.$

 $G\frac{mM}{r^2} = \frac{mv^2}{r}$, где m — масса спутника, M — масса планеты, v — скорость движения спутника по орбите.

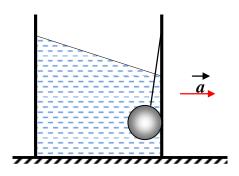
- 2) Связь скорости v и периода обращения T. $v = \frac{2\pi r}{T}$, $\Rightarrow r = \frac{Tv}{2\pi}$.
- 3) Ускорение свободного падения на поверхности планеты $g = \frac{GM}{R^2}$.

Из этих уравнений
$$\Rightarrow g = \frac{Tv^3}{2\pi R^2} = \frac{10 \cdot 3600 \cdot (4 \cdot 10^3)^3}{2\pi \cdot (6 \cdot 10^6)^2} = 10,2$$
 м/с².

Критерии оценивания задачи 2.

	Элементы решения	Баллы (макс. 8 баллов)
1	Записана формула связи скорости и периода (или любая дру-	+1 балла
	гая аналогичная формула кинематики движения по окружн.)	
2	Записан закон всемирного тяготения	+1 балла
3	Записан второй закон Ньютона при движении по окружности	+2 балла
4	Записана формула для ускорения свободного падения на по-	+1 балла
	верхности планеты	
5	Проделаны необходимые алгебраические преобразования	+2 балла
6	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 3 (14 баллов). Сосуд, имеющий форму прямоугольной призмы, заполнен водой. К боковой стенке сосуда подвешен на нити железный шарик радиуса R=10 см (см. рисунок). Трение шарика о стенку пренебрежимо мало. Сосуд движется с постоянным ускорением $a=g/\sqrt{3}$ по горизонтальной поверхности, шарик при этом не касается дна сосуда и остается полностью погруженным в воду. При какой минимальной длине нити шарик не будет давить на стенку?

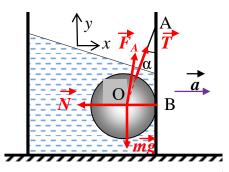


Плотность воды $\rho_{\rm B}=10^3$ кг/м³, плотность железа $\rho_{\rm w}=7,9\cdot10^3$ кг/м³. Ускорение свободного падения g=10 м/с².

Ответ.
$$l_{\min} = R = 0,1$$
 м.

Решение.

1) Силы, действующие на шарик, показаны на рисунке, и проходят через центр шара. Если бы сила натяжения нити \vec{T} не проходила бы через центр О, то относительно оси, проходящей через точку О, эта единственная сила создавала бы ненулевой вращательный момент и шар бы вращался до тех пор, пока положение нити, не оказалось бы проходящим через центр шара.



- 2) Сила Архимеда, в случае, когда сосуд движется с горизонтальным ускорением \vec{a} , направлена не вертикально, а перпендикулярно свободной поверхности жидкости и определяется формулой $\vec{F}_A = \rho_{_{\! B}} V(\vec{a} \vec{g})$, где $\rho_{_{\! B}}$ плотность воды, V объём шара.
- 3) Предположим, что шарик давит на стенку, тогда можно записать уравнения динамики шарика в проекциях на оси координат.

$$\begin{cases} x: T \sin \alpha + F_{Ax} - N = ma, \\ T \cos \alpha + F_{Ay} - mg = 0. \end{cases}$$

Проекции силы Архимеда на оси координат равны $F_{Ax}=
ho_{e}Va$ и $F_{Ay}=
ho_{e}Vg$.

Решаем полученную систему. $\Rightarrow (m-\rho_{e}V)g$ tg $\alpha=(m-\rho_{e}V)a+N$.

Т.к. плотность шарика больше плотности воды, то $m > \rho_{\rm g} V$. Условие того, что шар давит на стенку: N > 0. Тогда, чтобы шар давил на стену в процессе движения, должно выполняться неравенство $N = (m - \rho_{\rm g} V)(g \operatorname{tg} \alpha - a) > 0$. Откуда, с учетом того, что $m > \rho_{\rm g} V$, \Rightarrow

 $a < g \ {
m tg} \ lpha$. Соответственно, чтобы шарик не давил на стенку сосуда, должно быть $a \ge g \ {
m tg} \ lpha$ или ${
m tg} \ lpha \le \frac{a}{g} = \frac{1}{\sqrt{3}} \ , \Rightarrow lpha \le 30^\circ \, .$

4) Из геометрии получим
$$\sin \alpha = \frac{R}{R+l}$$
 . $\Rightarrow \frac{R}{R+l} \le \frac{1}{2}$, $\Rightarrow l \ge R$, и $l_{\min} = R = 0,1$ м.

Критерии оценивания задачи 3.

	Элементы решения	Баллы (макс. 14 баллов)
1	Сделан рисунок, с правильными направлениями всех сил	+1 балл
2	Пояснено, почему сила натяжения нити проходит через	+2 балла
	центр шара	
3	Указано, что сила Архимеда имеет не только вертикальную,	+2 балла
	но и горизонтальную составляющую и правильно записаны	
	формулы для силы Архимеда	
4	Записаны уравнения динамики для шара	+2 балла (по 1 баллу за
		каждую формулу)
5	Получено значение угла наклона нити (или любой из триго-	+2 балла
	нометрических функций этого угла)	
6	Проделаны необходимые алгебраические преобразования	+4 балла
7	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 4 (14 баллов). С v=1 моль идеального одноатомного газа совершают некоторый политропный процесс, в результате которого газ переходит из состояния с начальными объёмом $V_1=3$ л и абсолютной температурой $T_1=300$ К в состояние с объёмом $V_2=4,5$ л и абсолютной температурой $T_2=675$ К. Какую работу совершает газ в этом процессе? Связь давления p и объема V в политропном процессе описывается формулой $pV^n=const$, где показатель политропы n — некоторое действительное число. Универсальная газовая постоянная R=8,31 Дж/(моль·К).

Ответ.
$$A = \frac{1}{2} \nu R(T_2 - T_1) = \frac{1}{2} \cdot 1 \cdot 8,31 \cdot (675 - 300) = 1558$$
 Дж.

Решение.

1) Найдем показатель политропы п. Для этого запишем уравнение политропного процесса и уравнение состояния идеального газа, и найдем связь объема и температуры для политропного процесса.

$$\begin{cases} pV^{n} = c = const, \\ pV = vRT. \end{cases} \Rightarrow V^{n-1}T = const, \Rightarrow V_{1}^{n-1}T_{1} = V_{2}^{n-1}T_{2}, \Rightarrow \left(\frac{V_{1}}{V_{2}}\right)^{n-1} = \frac{T_{2}}{T_{1}}$$

Подставим в последнюю формулу числовые значения. Тогда

$$\left(\frac{3}{4,5}\right)^{n-1} = \frac{675}{300}, \Rightarrow \left(\frac{1}{1,5}\right)^{n-1} = 2,25 = 1,5^2, \Rightarrow 1-n=2, \Rightarrow n=-1.$$

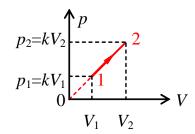
Таким образом, заданный процесс имеет вид p = kV, где k = const (см. рисунок).

2) Тогда работа газа равна
$$A = \frac{1}{2}(p_1 + p_2)(V_2 - V_1) = \frac{1}{2}k(V_2^2 - V_1^2)$$
.

Воспользуемся уравнениями состояний 1 и 2, которые за-

пишем в виде: $p_1V_1 = kV_1^2 = \nu RT_1$ и $p_2V_2 = kV_2^2 = \nu RT_2$.

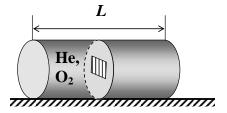
$$\Rightarrow A = \frac{1}{2} \nu R(T_2 - T_1) = \frac{1}{2} \cdot 1 \cdot 8,31 \cdot (675 - 300) = 1558$$
 Дж.



Критерии оценивания задачи 4.

	Элементы решения	Баллы (макс. 14 баллов)
1	Записано уравнение состояния идеального газа	+1 балл
2	Есть понимание, как посчитать работу ид. газа в любом про-	+2 балла
	цессе (через площадь под графиком, или интеграл)	
3	Получено значение показателя политропы п	+4 баллов
4	Получено выражения для работы	+6 баллов
5	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 5 (18 баллов). На гладком горизонтальном столе покоится цилиндрический сосуд длиной L=54 см. Сосуд разделен на две равные части неподвижной перегородкой, в которой имеется полупроницаемая мембрана; полупроницаемая мембрана пропускает молекулы гелия и не пропускает молекулы кислорода (см. рисунок).



Вначале мембрана закрыта, левая часть сосуда заполнена смесью гелия и кислорода, а в правой — вакуум. После открытия мембраны и установления теплового равновесия, давление в левой части сосуда уменьшилось на 25%. В какую сторону и на какое расстояние сдвинется при этом сосуд? Массой сосуда и перегородки пренебречь. Температуру газов за все время наблюдения считать одинаковой и неизменной. Молярные массы гелия и кислорода равны соответственно $\mu_{\Gamma} = 4$ г/моль, $\mu_{K} = 32$ г/моль.

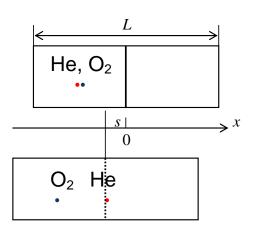
Ответ. Сосуд сместится влево на
$$s = \frac{L}{4\left(1 + \frac{\mu_{\kappa}}{\mu_{z}}\right)} = 1,5\,$$
 см.

Решение

1) Обозначим V — объём сосуда, m_1 — масса гелия Не, m_2 — масса кислорода О $_2$. Вначале центр масс гелия и кислорода находился посредине левой части сосуда. Тогда центр масс системы имеет

координату (см. первый рисунок)
$$x_{\mu.м.}^{haq.} = -\frac{L}{4}$$
.

После открытия мембраны гелий займет весь сосуд, и его центр масс будет находиться посредине сосуда, а положение центра масс кислорода не изменится, при этом будем считать, что сосуд сдвинулся влево на s (см. второй рисунок).



направлении, поэтому
$$x_{u.м.}^{\text{кон.}} = x_{u.м.}^{\text{нач.}} \Rightarrow s = \frac{m_1 L}{4(m_1 + m_2)}$$
.

2). Чтобы найти отношение масс газов, посчитаем начальное и конечное давления в в левой части сосуда. До открытия мембраны давление в левой части сосуда равно $p_{{\scriptscriptstyle Haq.}} = p_{\scriptscriptstyle e}^{{\scriptscriptstyle Haq.}} + p_{\scriptscriptstyle K} = \frac{2m_{\scriptscriptstyle 1}RT}{\mu_{\scriptscriptstyle e}V} + \frac{2m_{\scriptscriptstyle 2}RT}{\mu_{\scriptscriptstyle e}V} \,.$ После открытия мембраны и установления теплового

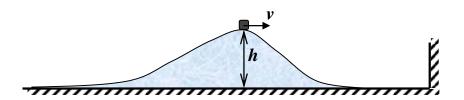
равновесия давление слева будет равно $p_{_{\!K\!O\!H\!.}}=p_{_{\!c}}^{_{\!K\!O\!H\!.}}+p_{_K}=\frac{m_{\!1}RT}{\mu_{\!_2}V}+\frac{2m_{\!2}RT}{\mu_{\!_K}V}$. По условию

$$p_{\scriptscriptstyle KOH.} = 0,75\,p_{\scriptscriptstyle HAY.}$$
. $\Rightarrow \frac{m_2}{m_1} = \frac{\mu_{\scriptscriptstyle K}}{\mu_{\scriptscriptstyle Z}} = \frac{32}{4} = 8$.
 Тогда $s = \frac{L}{4\left(1 + \frac{m_2}{m_1}\right)} = \frac{54}{4\cdot(1+8)} = 1,5$ см.

Критерии оценивания задачи 5.

	Элементы решения	Баллы (макс. 18 баллов)
1	Получены выражения для парциальных давлений гелия (в	+3 балла (по 1 баллу за
	начальном и конечном состояниях) и кислорода	каждую формулу)
2	Записаны формулы для давления в левой части сосуда в	+2 балла (по 1 баллу за
	начальном и конечном состояниях	каждую формулу)
3	Записаны формулы для начального и конечного положений	+2 балла (по 1 баллу за
	центра масс системы	каждую формулу)
4	Указано, что центр масс системы не смещается	+1 балла
5	Получена формула для смещения сосуда s	+3 балла
6	Получено отношение масс азота и водорода	+3 балла
7	Сделаны необходимые алгебраические преобразования и по-	+2 балла
	лучена окончательная формула для смещения s	
8	Указано, что сосуд сместился влево	+1 балла
9	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

Задача 6 (18 баллов). На горизонтальной поверхности льда находится ледяная горка, которая может скользить по поверхности льда (см. рисунок). На вершине горки покоится маленькая шайба. Масса горки в k=8 раз больше массы шайбы. Вначале горка и шайба неподвижны. Трение пренебрежимо мало. Шайбе сообщили горизонтально направленную скорость v=1 м/с, при которой она, соскользнув с горки и ударившись упруго о вертикальный борт, при обратном движении смогла подняться на вершину горки. При какой максимальной высоте h горки это возможно? Считать, что при движении по горке шайба не отрывается от горки, все движения шайбы и горки по горизонтальной поверхности происходят вдоль одной прямой. Ускорение свободного падения g=10 м/с 2 .



Otbet.
$$h = \frac{25v^2}{16g} = 0,156 \text{ M}.$$

Решение.

Обозначим массу шайбы m, тогда масса горки 8m. Когда шайба съезжает с горки, она приобретает скорость v_1 , горка при этом движется в противоположную сторону со скоростью v_2 . Эти скорости можно найти из законов сохранения энергии и проекции импульса на горизонтальную ось. После удара о бортик, скорость шайбы поменяет направление, но не модуль. Поэтому чтобы оказаться на вершине снова должно быть $v_1 > v_2$. При этом, когда шайба снова окажется на вершине скорости шайбы и горки относительно земли должны быть одинаковыми (обозначим эту скорость u). Для нахождения u также применяем законы сохранения импульса и энергии. В результате получим систему.

$$\begin{cases} \frac{mv^{2}}{2} + mgh = \frac{mv_{1}^{2}}{2} + \frac{8mv_{2}^{2}}{2}, \\ mv = mv_{1} - 8mv_{2}, \\ \frac{mv_{1}^{2}}{2} + \frac{8mv_{2}^{2}}{2} = \frac{9mu^{2}}{2} + mgh, \\ mv_{1} + 8mv_{2} = 9mu. \end{cases} \Rightarrow \begin{cases} v^{2} + 2gh = v_{1}^{2} + 8v_{2}^{2}, & (1) \\ 9u^{2} + 2gh = v_{1}^{2} + 8v_{2}^{2}, & (2) \\ v = v_{1} - 8v_{2}, & (3) \\ 9u = v_{1} + 8v_{2}. & (4) \end{cases}$$

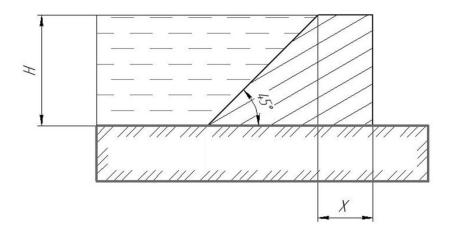
Из (1) и (2) получим $u=\frac{v}{3}$, затем из (3) и (4) $\Rightarrow v_1=2v$, $v_2=\frac{v}{8}$. Подставим найденные значения v_1 и v_2 в уравнение (1), получим $h=\frac{25v^2}{16g}=\frac{25\cdot 1^2}{16\cdot 10}=0,156$ м.

Критерии оценивания задачи 6.

	Элементы решения	Баллы (макс. 18 баллов)
1	Записаны уравнения законов сохранения энергии и импульса	+8 баллов (по 2 балла
	в обоих случаях	за каждое уравнение)
2	Указано, что при упругом отражении от бортика модуль ско-	+1 балла
	рости сохранится, изменится только направление	
3	Есть понимание, что во втором случае, когда шайба на вер-	+2 балла
	шине горки, скорости горки и шайбы равны	
4	Проделаны необходимые алгебраические преобразования	+6 баллов
5	Сделаны подстановки числовых значений и получен пра-	+1 балл
	вильный ответ	

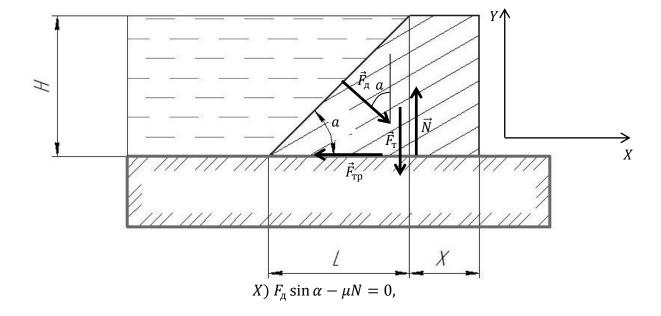
Ситуационная задача

Гравитационная плотина — это сооружение, преграждающее путь воде, удерживаемое на месте только силой трения между основанием конструкции и опорной поверхностью. Рассматриваемая плотина, горизонтальной протяженностью a=1 м, выполнена из бетона, имеет поперечное сечение в форме трапеции, длина малого основания которой X=5,5 м. "Мокрая" стенка плотины наклонена под углом 45 градусов к горизонту, а "сухая" — вертикальна, высота столба жидкости, равна высоте плотины H. Коэффициент трения между конструкцией и опорной поверхностью $\mu=0,25$, плотность бетона $\rho_6=2200$ кг/м³, плотность воды $\rho_{\rm B}=1000$ кг/м³. Найдите минимальную высоту плотины H, при которой она будет неподвижна.



Решение:

Запишем условие равновесия плотины в проекциях на горизонтальную и вертикальную ось.

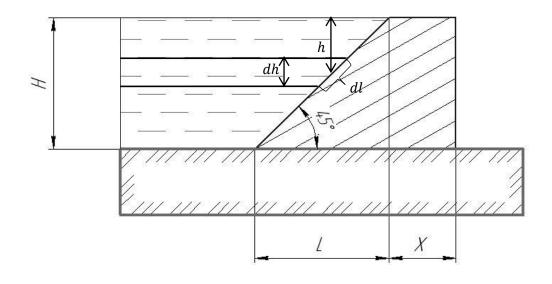


$$Y) F_{\mu} \cos \alpha + mg - N = 0.$$

Найдем полную силу давления воды на наклонную стенку плотины $F_{\rm d}$. Давление воды на глубине h

$$p = \rho_{\scriptscriptstyle \rm B} g h$$

Слой воды толщиной dh давит на участок шириной dl



$$dl = \frac{dh}{\sin \alpha}$$

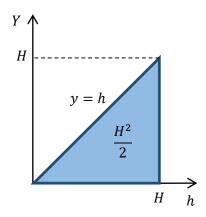
с силой

$$dF_{\!\scriptscriptstyle
m I}=pds=
ho_{\scriptscriptstyle
m B}gha\cdot dl=
ho_{\scriptscriptstyle
m B}gharac{dh}{\sinlpha}$$

тогда полная сила давления

$$F_{\mathrm{M}} = \sum_{h=0}^{H} \rho_{\mathrm{B}} g h a \; \frac{dh}{\sin \alpha} = \frac{\rho_{\mathrm{B}} g a}{\sin \alpha} \sum_{h=0}^{H} h \; dh.$$
$$\sum_{h=0}^{H} h \; dh = \frac{H^{2}}{2}.$$

Также можно решить графически — как площадь фигуры, ограниченной графиком функции y(h) = h.



Таким образом, полная сила давления воды на поверхность плотины

$$F_{\rm M} = \frac{\rho_{\rm B} g \alpha H^2}{2 \sin \alpha}$$

Решая систему, находим массу

$$m = \frac{\rho_{\rm B} \alpha H^2}{2\mu} (1 - \mu(ctg\alpha)).$$

С другой стороны, масса плотины

$$m = \rho_6 V = \rho_6 a H \frac{(L+2X)}{2}.$$

Отсюда, учитывая, что $L = H \operatorname{ctg} \alpha$,

$$H = \frac{2X}{\left(\frac{\rho_{\rm B}}{\rho_{\rm 6}}\left(\frac{1 - \mu \operatorname{ctg}\alpha}{\mu}\right) - \operatorname{ctg}\alpha\right)}$$

Проанализирует полученное выражение. Точки минимума для H не существует, так как в знаменателе стоят постоянные величины, изменяться может только X. Следовательно, при любом значении высоты плотины H>0 она будет не подвижна. Расчитаем предельное значение высоты плотины:

$$H = \frac{2X}{\left(\frac{\rho_{\rm B}}{\rho_{\rm G}}\left(\frac{1 - \mu \operatorname{ctg}\alpha}{\mu}\right) - \operatorname{ctg}\alpha\right)} = 31,4 \text{ M}.$$

Ответ: минимальная высота плотины Н>0.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Критерии оценивания олимпиадной работы

Профиль: Физика («Профессор Жуковский»)

Предмет: Физика **Класс:** 10, вариант 2

Задание 1 (максимальная оценка 8 б.)

Критерий (указать балл по каждому критерию)	Макс. балл
Записана формула для времени подьема t1	1
Записана формула для нахождения t2 (или как альтернатива формула для полного времени движения T)	2
Записаны все уравнения, необходимые для решения задачи	2
Проделаны необходимые алгебраические преобразования	2
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 2 (максимальная оценка 8 б.)

	Макс.
Критерий (указать балл по каждому критерию)	балл
Записана формула связи скорости и периода (или любая другая аналогичная формула кинематики	1
движения по окружн.)	
Записан закон всемирного тяготения	1
Записан второй закон Ньютона при движении по окружности	2
Записана формула для ускорения свободного падения на поверхности планеты	1
Проделаны необходимые алгебраические преобразования	2
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 3 (максимальная оценка 14 б.)

	Макс.
Критерий (указать балл по каждому критерию)	балл
Сделан рисунок, с правильными направлениями всех сил	1
Пояснено, почему сила натяжения нити проходит через центр шара	2
Указано, что сила Архимеда имеет не только вертикальную, но и горизонтальную составляющую и	2
правильно записаны формулы для силы Архимеда	
Записаны уравнения динамики для шара	2
Получено значение угла наклона нити (или любой из тригонометрических функций этого угла)	2
Проделаны необходимые алгебраические преобразования	4
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 4 (максимальная оценка 14 б.)

Sugarino 1 (makemaarinan odenka 11 0.)	
Критерий (указать балл по каждому критерию)	Макс. балл
Записано уравнение состояния идеального газа	1
Есть понимание, как посчитать работу ид. газа в любом процессе (через площадь под графиком, или интеграл)	2
Получено значение показателя политропы п	4
Получено выражения для работы	6
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 5 (максимальная оценка 18 б.)

Критерий (указать балл по каждому критерию)	Макс. балл
Получены выражения для парциальных давлений и водорода и азота	2
Записаны формулы для давления в левой и правой частях сосуда	2
Записаны формулы для начального и конечного положений центра масс системы	2
Указано, что центр масс системы не смещается	1
Получена формула для смещения сосуда s	3
Получено отношение масс азота и водорода	4
Сделаны необходимые алгебраические преобразования и получена окончательная формула для смеще-	2
г в в в в в в в в в в в в в в в в в в в	
Указано, что сосуд сместился влево	1
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание 6 (максимальная оценка 18 б.)

	Макс.
Критерий (указать балл по каждому критерию)	балл
Записаны уравнения законов сохранения энергии и импульса в обоих случаях	8
Указано, что при упругом отражении от бортика модуль скорости сохранится, изменится только на-	1
правление	
Есть понимание, что во втором случае, когда шайба на вершине горки, скорости горки и шайбы равны	2
Проделаны необходимые алгебраические преобразования	6
Сделаны подстановки числовых значений и получен правильный ответ	1

Задание С (максимальная оценка 20 б.)

Критерий (указать балл по каждому критерию)	Макс. балл
Сформулирована расчётная схема (в том числе, графически), выделены и правильно формализованы	5
все необходимые физические законы	
Составлена система уравнений и математическая модель	5
Верно учтены технические параметры, характеристики и ограничения	5
Проведены расчеты, получен верный ответ, разумный с точки зрения физического смысла	5