Материалы заданий олимпиады 2022-2023 учебного года

Многопредметная олимпиада <u>Пермского государственного национального</u> исследовательского университета «Юные таланты» Предмет (комплекс предметов): Химия

2. КРИТЕРИИ ОЦЕНИВАНИЯ ЗАДАНИЙ ВТОРОГО (ЗАКЛЮЧИТЕЛЬНОГО) ЭТАПА

- 2.1. Критерии оценивания заданий Отборочного теоретического тура
- 2.1.3. Задания 11 класса

$$\rho = \frac{m}{V} = \frac{n \cdot M}{V} = \frac{z \cdot M}{N_a \cdot V},$$

где ρ – плотность кристаллического вещества, г/см 3 ; М – молярная масса вещества, г/моль; Z – число формульных единиц, содержащихся в одной элементарной ячейке; V – объем элементарной ячейки, Å 3 .

$$\rho = \frac{z \cdot M}{N_a \cdot V} \rightarrow M_I = \frac{N_a \cdot V \cdot \rho}{z} = \frac{6,022 \cdot 10^{23} \cdot 781,77 \cdot 10^{-24} \cdot 3.434}{4} = 404 \text{ г/моль}$$

$$M_{II} = \frac{N_a \cdot V \cdot \rho}{z} = \frac{6,022 \cdot 10^{23} \cdot 872,67 \cdot 10^{-24} \cdot 3.213}{4} = 422 \text{ г/моль}$$

По описанию ИК спектров и указанию на то, что комплексы – гетеролигандные, понятно, что в качестве лигандов могут выступать только сукцинат-ионы и вода, тогда $I = [UO_2(C_4H_4O_4)(H_2O)]$, $II = [UO_2(C_4H_4O_4)(H_2O)_2]$.

Приведенные потери масс соответствуют следующим схемам

UO₂suc·2H₂O 140-160 °C UO₂suc·0.5H₂O 210-230 °C UO₂suc 350-430 °C 1/3 U₃O₈ Teop. 6.4% Teop. 8.5% Teop. 33.5%

Получили оксид урана(+6)-диурана(+5) U_3O_8

Разбалловка

№	Элемент ответа	Баллы
1.	Формулы соединений I и II	2x2 = 46
2	Продукт разложения І: $UO_2(C_4H_4O_4)$	1 6
3.	Продукт разложения II: $UO_2(C_4H_4O_4)0.5(H_2O)$	1 6
	$UO_2(C_4H_4O_4)$	1 6
4.	Конечный продукт разложения U_3O_8	2 б.
5.	Степени окисления урана: +5, +6	1 б
	Итого	10 баллов

Задача №11-2

1. По характеристикам и реакциям понятно, что элемент \mathbf{X} – это кремний (Si). Подтвердим это расчетами. Если обозначить формулу как $Mg_yX_{z_y}$ то при массовой доли \mathbf{X} в соединении 63,38% получим:

	y=1	y=2 (Si)	y=3	y=4
A_r , г/моль	14,043	28,086	42,129	56,17

 $(A_{Mg} = 24,31г/моль)$

Соединения

X - Si

 $\mathbf{A} - Mg_2Si$

 $\mathbf{F} - \mathrm{SiH}_4$

 $\mathbf{B} - K[SiH_3]$

 Γ – MeSiH₃

 $\Pi - Me_3SnSiH_3$

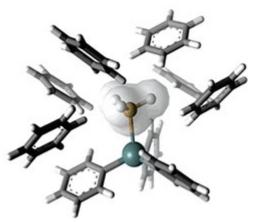
 $\mathbf{E} - \mathbf{MgCl_2}$

- 2. Происходящиереакции:
- $(1) 2Mg + Si = Mg_2Si$
- (2) Mg₂Si + 4HCl = SiH₄ + 2MgCl₂
- (3) $SiH_4 = Si + 2H_2$
- (4) $SiH_4 + 2NaOH + H_2O = Na_2SiO_3 + 4H_2$
- $(5) 2SiH_4 + 2K = 2K[SiH_3] + H_2$
- (6) $K[SiH_3] + MeI = MeSiH_3 + KI$
- (7) $K[SiH_3] + Me_3SnCl = Me_3SnSiH_3$

Найдем молярную массу соединения Г:

$$\frac{28,086 \text{ г/моль}}{60.86} \times 100 = 46,15 \text{ г/моль}$$

Молекулярная масса оставшихся элементов: 18 г/моль (CH_6) - $MeSiH_3$.


Найдем молярную массу вещества Е:

$$\dfrac{1~\Gamma}{70,212~\Gamma/\text{моль}} = 0,0142~\text{моль}$$
 $\dfrac{2,776~\Gamma}{0,0142~\text{моль}} pprox 195~\Gamma/\text{моль}$

Этой формуле соответствует формула: Me_3SnSiH_3 .

Центральные атомы: Sn, Si. Геометрия обоих: тетраэдр.

В качестве примера представлен комплекс Ph₃SnSiH₃.

Разбалловка

1.	Расчет вещества X	0,5 б.
2.	Элемент Х, веществаА-Е	7.0,5 б.=3,5 б.
3.	Написание уравнения реакции	7.0,5 б.=3,5 б.
4.	Подтверждение формулы Г	0,5 б.
5.	Расчет молярной массы вещества Д	1 6.
6.	Геометрия молекулы Me ₃ SnSiH ₃	0,5 б.
7.	Геометрия центральных атомов	0,5 б.
	ИТОГО	10б.

Задача №11-3

1. Из текста задачи очевидно, что металлом $\bf A$ может являться железо и марганец, однако кислот Льюиса с марганцем в органическом синтезе не замечено. Жидкий галоген $\bf B$ – бром Br_2 .

$$2\text{Fe} + 3\text{Br}_2 \rightarrow \text{Fe}_2\text{Br}_6$$

- 2. Такие соединения называют кислотами Льюиса. Кислоты они потому, что способны принимать пару электронов частицы-донора на незаполненную орбиталь атома металла. Аналогично тому, как протон способен принимать неподеленную электронную пару, например, аммиака.
- 3. Реакции, катализируемые кислотами Льюиса, притекают с участием аренов. Ареном, который не обесцвечивает перманганат калия, является бензол. Реакция бензола с бромом:

$$+ Br_2$$
 Fe_2Br_6 $+ HBr$

Разбалловка

№	Элемент ответа	Баллы
1.	Название «кислоты Льюиса»	1 б

	Объяснение их кислотности	2 6
2	Вещества А, В, Х	3×1,5 = 4,5 6
3.	Реакция бензола с бромом	2,5 6
	Итого	10 баллов

Задача №11-4

1. Вещество C – ацетилен, значит вещество A – этилен, т.к. этан не взаимодействует с газообразным хлором при отсутствии каких-либо дополнительных факторов.

В таком случае вещества А-Н имеют следующие формулы:

2. Два оставшихся продукта хлорирования уксусной кислоты — дихлоруксусная кислота CCl₂H—COOH и трихлоруксусная кислота CCl₃—COOH. Поскольку хлор обладает большей ЭО, чем углерод, то он стягивает электронную плотность на себя, что приводит к повышению полярности связи О—H и облегчению её разрыва. Таким образом, наиболее кислой реакцией среды будет обладать водный раствор трихлоруксусной кислоты.

Разбалловка

1.	Изображение структур веществ А, С	2×0,5 б = 1 б
	Изображение структур веществ В, D-Н	6×1 6 = 6 6
2.	Изображение оставшихся структур дихлоруксусной и трихлорук-	2×1 6 = 2 6
	сусной кислот.	
3.	Объяснение самой кислой среды для раствора трихлоруксусной	16
	кислоты	
	ИТОГО	10 б

Задача № 11-5

Медный купорос имеет формулу CuSO₄·5H₂O

При его нагреве будет происходить дегидратация. Из-за небольшой температуры только часть молекул отделятся. Запишем уравнение реакции:

$$CuSO_4 \cdot 5H_2O = CuSO_4 \cdot nH_2O + yH_2O$$

Чтобы установить точный состав кристаллогидрата после испарения, необходимо узнать количество воды, которое выделилось в ходе процесса. Разница в давлении связана с газооб-

разной водой, которая появилась в системе. Будем считать, что вода является идеальным газом, воспользуемся соответствующим уравнением:

$$pV = \nu RT \rightarrow \nu = \frac{PV}{RT}$$
,

где T = 50 + 273 = 323 K;

 $R = 8,314 \, \text{Дж/моль·К};$

 $V = 1 \cdot 1 \cdot 2 = 2 \text{ m}^3;$

 $P = 1216 \Pi a$.

$$\nu = \frac{1216 \cdot 2}{8.314 \cdot 323} = 0.9$$
 моль

Масса воды: $m_{H2O} = 0.9 \cdot 18 = 16.2 \text{ г.}$

Потеря массы в ходе реакции:

потеря массы =
$$\frac{16.2}{150} \cdot 100\% = 10.8 \%$$

Кристаллогидрат после дегидратации имеет массу m (CuSO₄·nH₂O) = 150 – 16,2 = 133,8 г.

 $M (CuSO_4 \cdot 5H_2O) = 250 \ \Gamma/MOЛЬ - 150 \ \Gamma$

M (CuSO₄·nH₂O) = x г/моль – 133,8 г.

M (CuSO₄ ·
$$n$$
H₂O) = $\frac{133.8 \cdot 250}{150}$ = 223 г/моль

Учитывая, что молекулярная масса CuSO₄ равна 160 г/моль, получаем молекулярную массу воды в кристаллогидрате 63 г/моль. Число молекул воды будет равно:

$$n = \frac{63}{18} = 3,5$$
 молекул

Формула образующегося кристаллогидрата: $CuSO_4 \cdot 3,5H_2O$

Итоговое уравнение реакции:

$$CuSO_4 \cdot 5H_2O = CuSO_4 \cdot 3,5H_2O + 1,5H_2O$$

Для рассматриваемого равновесия константа будет зависеть только от давления газообразного вещества — воды (активности твердых веществ принимаются равными единице). Давление водяного пара = $1216\ \Pi a = 0.01216\ бар$.

$$K_p = (p_{H_2O})^{1.5} = (0.01216)^{1.5} = 0.00134$$

Разбалловка

№	Элемент ответа	Баллы
1.	Уравнение реакции дегидратации с указанием коэффициентов.	2 6
	(Без указания коэффициентов – 0,5 б)	
2	Расчет массы испарившейся воды.	2 б
3.	Расчет формулы кристаллогидрата после испарения	2 б
4.	Расчет массовой доли испарившейся воды	1 б
5.	Расчет константы равновесия при температуре 323 К	3 б
	Итого	10 баллов