Материалы заданий олимпиады 2022—2023учебного года Многопредметная олимпиада Пермского государственного национального исследовательского университета «Юные таланты» Предмет (комплекс предметов): Химия

2.2. Критерии оценивания заданий Теоретического тура

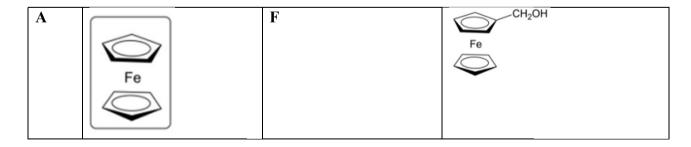
2.2.3. Задания 11 класса

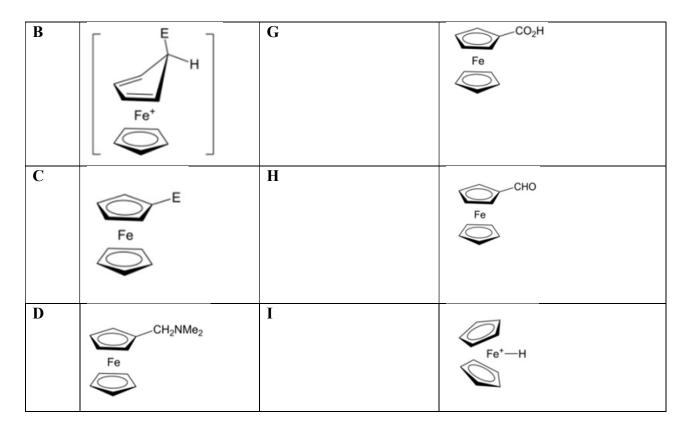
Задача №11-1

1. Определение металла Х:

Предположим, что X – железо Fe.

Сделаем проверку:


$$\dfrac{1\,\mathrm{\Gamma}}{55,847\dfrac{\mathrm{\Gamma}}{\mathrm{МОЛЬ}}}=0,0179\,\mathrm{МОЛЬ}$$
 $V=\dfrac{0,0179\times8,314\times293\times10^6}{101325}=430\,\mathrm{MЛ}$


Полученный объем водорода согласуется с условием.

- 2. Уравнения реакций:
 - 1) $Fe + 2HCl = FeCl_2 + H_2$
 - 2) $FeCl_2 + 2C_5H_6 + 2(C_2H_5)_2NH = Fe(C_5H_5)_2 + 2[(C_2H_5)_2NH_2]Cl$

А – ферроцен.

1. Структурные формулы веществ:

Источник:Astruc, D. (2017), Why is Ferrocene so Exceptional?. Eur. J. Inorg. Chem., 2017: 6-29. https://doi.org/10.1002/ejic.201600983

Разбалловка

Вещество Х	0,56.
Уравнения реакций 1 и 2	2*0,56. = 16.
Название А	0,56.
Структурные формулы веществ А-І	8*16.= 86.
ОТОТИ	106.

Задача №11-2

1. Судя по описанию, в задаче описаны химические свойства серебра Ag, так как именно для него свойственно на воздухе покрываться черной пленкой сульфида Ag_2S . Проверим это:

$$\omega(Ag) = 107,87 \times 2 / (107,87 \times 2 + 32) = 0,8708 = 87,08\%$$
 - соответствует условию.

При действии на черный Ag_2S азотной кислоты он превращается в белый сульфат Ag_2SO_4 , а при реакции со смесью соляной кислоты и пероксида водорода — в белый хлорид AgCl. Растворение хлорида серебра в растворе тиосульфата натрия может приводить к веществам состава $Na_x[Ag(S_2O_3)_y]$. Рассчитаем молярные массы, исходя из известных массовых долей:

$$M(\Gamma) = 107,87/0,2691 = 400,9$$
 г/моль — $Na_3[Ag(S_2O_3)_2]$

$$M(Д) = 107,87/0,193 = 558,9 г/моль - Na5[Ag(S2O3)3]$$

Таким образом,

X	A	Б	В	Γ	Д
Ag	Ag ₂ S	Ag ₂ SO ₄	AgCl	Na ₃ [Ag(S ₂ O ₃) ₂]	Na ₅ [Ag(S ₂ O ₃) ₃]

2. Уравнения реакций:

[1]
$$Ag + 2HNO_{3(KOHIL)} = AgNO_3 + NO_2 + H_2O$$

[2]
$$2Ag + 4HI_{(KOHIL.)} = 2H[AgI_2] + H_2$$

[3]
$$4Ag + 8NaCN + O_2 + H_2O = 4Na[Ag(CN)_2] + 4NaOH$$

[4]
$$4Ag + 2H_2S + O_2 = 2Ag_2S \downarrow + 2H_2O$$

[5]
$$Ag_2S + 8HNO_3 \rightarrow Ag_2SO_4 + 8NO_2 \uparrow + 4H_2O$$

[6]
$$Ag_2S + 4H_2O_2 + 2HCl \rightarrow 2AgCl \downarrow + H_2SO_4 + 4H_2O$$

[7]
$$Ag_2S + Ag_2SO_4 \rightarrow 4Ag + 2SO_2\uparrow$$

3. В кубической гранецентрированной ячейке атомы соприкасаются на диагонали грани (обозначим $d_{\rm rp}$), то есть $d_{\rm rp}=4r$. Диагональ грани по теореме Пифагора $d_{\rm rp}^{\ \ 2}=a^2+a^2=2a^2$, откуда

$$d_{\text{rp}} = a \cdot \sqrt{2} = 4r$$
, $r_{\text{at}} = a \cdot \sqrt{2} / 4 = 408, 6 \cdot \sqrt{2} / 4 = 144,5 \text{ mm}$

Плотность можно найти по формуле:

 $\rho_{(X)} = \frac{M_X \cdot N_X}{a^3 \cdot N_A}$, где N — число атомов в одной элементарной ячейке (для гранецентрированной ячейки N = 4), то

$$\rho(Ag) = 107.87 \times 4/((4.086 \cdot 10^{-8})^3 \times 6.02 \cdot 10^{23}) = 10.5 \text{ r/cm}^3.$$

4. Диссоциация сульфида серебра может быть представлена схемой

$$Ag_2S \rightleftharpoons 2Ag^+ + S^{2-}$$

исходя из которой $\Pi P(Ag_2S) = [Ag^+]^2 \cdot [S^{2-}]$

Из уравнения электролитической диссоциации следует $[Ag^+] = 2[S^{2-}],$

тогда
$$\Pi P(Ag_2S) = (2[S^{2-}])^2 \cdot [S^{2-}] = 4[S^{2-}]^3$$
.

Также, из уравнения диссоциации видно, что $C_M(Ag_2S) = [S^{2-}]$, то

$$C_M(Ag_2S) =$$

Тогда,
$$C(S^{2-}) = [S^{2-}] = \mathbf{2,62 \cdot 10^{-17}}$$
 моль/л,
$$C(Ag^+) = [Ag^+] = 2 \times 2,62 \cdot 10^{-17} = \mathbf{5,24 \cdot 10^{-17}}$$
 моль/л,

1 мкг (10^{-6} г) ионов серебра будет содержаться в объеме раствора:

$$V(p-pa) = m/(C \times M) = 10^{-6}/(5.24 \cdot 10^{-17} \times 107.87) = 1.77 \cdot 10^8$$
 л

Разбалловка

No	Элемент ответа	Баллы
1.	Формулы Х и веществ А-Д	6×0,5 = 3 6
2	Уравнения реакций 1-7	$7 \times 0,5 = 3,5 6$
3.	Радиус и плотностьХ	2×1 = 2 6
4	Молярные концентрации ионов	2×0,5 = 1 б
	Объем насыщенного водного раствора	0,5 б
	Итого	10 баллов

Задача № 11-3

1. Вещество A – монохлоруксусная кислота, вещество E – ацетон, т.к. фенол нельзя получить пиролизом ацетатов щелочноземельных металлов.

В таком случае вещества А-Н имеют следующие формулы:

- 2. Второе соединение, получаемое кумольным способом фенол
- 3. Реакция Михаэля между веществами Н и F:

4. Исходя из структуры I, взаимодействие Хи Y будет протекать по схеме:

RCHO + 2
$$O CH_3$$
 $O O CH_3$ $O O CH_3$ $O O CH_3$ $O O CH_3$

Молярную массу неизвестного альдегида можно выразить как (R+29) г/моль, а молярную массу продукта реакции -(R+291) г/моль. Тогда получим уравнение: 0.58/(R+29) = 3.2/(R+291), откуда R=29 г/моль, что соответствует группе C_2H_5 . Следовательно, формулы неизвестных веществ:

Разбалловка

1	Структурные формулы А-Е,	5×0,5 б = 2,5 б
	Структурные формулы Н и I	4×1 6 = 4 6
2	Структурная формула фенола	0,5 6
3	Структурная формула продукта	1 6
4	Структурные формулы X и Y (без расчета баллы снижаются вдвое)	2×1 6 = 2 6
	ОТОТИ	10 б

Задача №11-4

1. Рассчитаем молярную массу газа В:

$$M(B) = 1.96 \times 22.4 = 44 \Gamma/MOЛЬ.$$

Такую молярную массу имеют CO_2 , N_2O , C_3H_8 . Последние два газа не могут выделяться при разложении природных минералов в качестве единственного газообразного продукта, поэтому B – углекислый газ.

Если предположить, что при разложении на 1 моль A выделяется 1 моль B, то $M(A) = 44/0,44 = 100 \text{ г/моль} - это карбонат кальция.}$

Твердый продукт при разложении карбоната кальция — это оксид кальция. При нагревании оксида кальция с углем образуется карбид CaC_2 , который при гидролизе дает ацетилен C_2H_2 - легковоспламеняющийся газ G. При длительном нагревании CaC_2 в атмосфере азота при $1000-1100^{\circ}C$ он превращается в цианамид кальция $CaCN_2$. При гидролизе цианамида кальция сначала образуется свободный цианамид NH_2CN (M), который далее гидролизуется в мочевину или карбамид (NH_2) $_2CO$ (L). Впервые в лаборатории мочевина была получена при изомеризации цианата (изоцианата) аммония NH_4OCN . При действии на мочевину метиламином образуется N-метилмочевина (Q), которая при обработке нитритом натрия в кислой среде превращается в N-нитрозометилмочевину (R). При разложении в щелочной среде N-нитрозометилмочевину выделяет диазометан CH_2N_2 (S)

Формулы веществ:

A	В	D	E	G	L	M
CaCO ₃	CO_2	CaO	CaC ₂	C_2H_2	CaCN ₂	NH ₂ CN

N	0	P	Q	R	S
(NH ₂) ₂ CO	NH ₄ OCN (NH ₄ NCO)	NH ₃	H ₃ C-NH-C-NH ₂	H ₃ C-N-C-NH ₂ NO O	CH_2N_2

Структурные формулы изомеров М:

$$H$$
 $N-C\equiv N$ $H-N=C=N-H$

2. Уравнения реакций:

[1]
$$CaCO_3 = CaO + CO_2 (1000^{\circ}C)$$

[2]
$$CaO + 3C = CaC_2 + CO$$

[3]
$$CaC_2 + 2H_2O = C_2H_2 + Ca(OH)_2$$

[4]
$$CaC_2 + N_2 = CaCN_2 + C$$

[5]
$$CaCN_2 + 2H_2O = NH_2CN + Ca(OH)_2$$

[6]
$$NH_2CN + H_2O = (NH_2)_2CO$$

[7]
$$NH_4OCN = (NH_2)_2CO$$

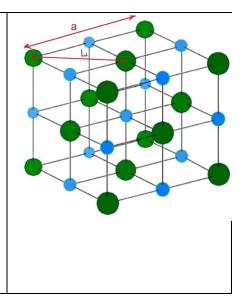
[8]
$$(NH_2)_2CO + H_2O = CO_2 + 2NH_3$$

- 3. Ученый, осуществивший синтез мочевины из цианата (изоцианата) аммония Велер.
 - 4. Анализ кристаллической решетки CaC₂:

Рассмотрим кристаллическую решетку типа NaCl с параметром а (см. рисунок справа). Пусть, зеленые шарики — это ионы кальция. Кратчайшее расстояние между катионами кальция обозначим за L. Из рисунка видно, что $L = \sqrt{2} \times a/2$.

Определим параметр а:

$$a=\sqrt[3]{\frac{M\cdot Z}{\rho\cdot N_A}}$$
 , где $M-$ молярная масса CaC_2 (64 г/моль), $Z-$ коли-

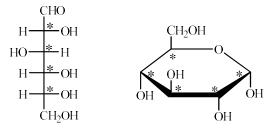

чество формульных единиц в ячейке (в нашем случае Z=4)

$$a = \sqrt[3]{\frac{64 \cdot 4}{2.22 \cdot 6,02 \cdot 10^{23}}} = 5,76 \cdot 10^{-8} \text{ cm} = 5,76 \cdot 10^{-10} \text{ m} = 5,76 \text{ Å} = 576$$

ΠМ

Расстояние между катионами кальция:

$$L = \sqrt{2} \times 576/2 = 407 \text{ nm} = 4.07 \text{ Å} = 4.07 \cdot 10^{-8} \text{ cm} = 4.07 \cdot 10^{-10} \text{ m}$$



Разбалловка

No	Элемент ответа	Баллы
1.	Формулы веществА- Р	$10 \times 0,25 = 2,5 \text{ f}$
	Формулы веществQ, R, S	$3 \times 0,5 = 1,5 6$
	Структурные формулы ${f M}$	$2 \times 0,25 = 0,5 6$
2	Уравнения реакций 1-8	8×0,5 = 4 6
3.	Фамилия ученого	0,5 б
4	Расстояние между двумя катионами в Е	1 6
	Итого	10 баллов

Задача №11-5

1. Структурные формулы открытой и циклической форм глюкозы:

В открытой форме глюкоза содержит 4 хиральных центра, но при образовании циклической формы возникает дополнительный центр хиральности, поэтому суммарно в цикличе-

ской форме глюкозы 5 хиральных центров (указаны звездочками на проекционных формулах).

2. Структурные формулы веществ:

Тривиальные названия:

X- глицин Y- аланин

- 3. Реагенты, с помощью которых можно различить глюкозу и аминокислоты глицин и аланин (засчитывается любой из вариантов):
- 1) Гидроксид меди Cu(OH)₂ или реактивы Фелинга/Бенедикта-Фелинга (тартратные или цитратные комплексы меди II)

Голубой осадок $Cu(OH)_2$ растворяется в них с образованием растворов василькового цвета, но при последующем нагревании только в растворе глюкозы образуется кирпично-красный осадок Cu_2O .

2) Гидроксид диамминсеребра — реактив Толленса [$Ag(NH_3)_2$]ОН (старое название — аммиачный раствор оксида серебра).

При нагревании глюкозы с данным реактивом протекает реакция «серебряного зеркала» - на стенках пробирки / колбы образуется блестящий налет металлического серебра. Глицин и аланин данную реакцию не дают.

Разбалловка

No	Элемент ответа	Баллы
1.	Структурные формулы открытой и циклической форм глюкозы	$2 \times 1 = 2 6$
	Число хиральных центров	$2 \times 0,5 = 1 6$
2	Структурные формулы веществ А-G, Х и У	$9 \times 0,5 = 4,5 6$
	Тривиальные названия веществ Х и У	$2 \times 0,5 = 1$ 6
3.	Формула реагента	0,5 б
	Признаки реакций	1 б
	Итого	10 баллов