2. КРИТЕРИИ ОЦЕНИВАНИЯ ЗАДАНИЙ ВТОРОГО (ЗАКЛЮЧИТЕЛЬНОГО) ЭТАПА

- 2.1. Критерии оценивания заданий Отборочного теоретического тура
- 2.1.1. Задания 7-8 класса

Задача №8-1

1. Ион ClO_4^- , состоящий только из изотопов ³⁵Cl и ¹⁶O будет содержать:

электронов (e): 17 + 4.8 + 1 = 50, протонов (p): 17 + 4.8 = 49, нейтронов (n): 18 + 4.8 = 50.

2. Ион ClO_4^- , состоящий только из изотопов 37 Cl и 18 O будет содержать:

электронов (e): 17 + 4.8 + 1 = 50, протонов (p): 17 + 4.8 = 49, нейтронов (n): 20 + 4.10 = 60.

3. ClO_4 - перхлорат ион, кислотный остаток хлорной кислоты ($HClO_4$) — одной из самых сильных минеральных кислот.

Разбалловка

Элемент ответа	Баллы
Число <i>e, p, n</i> для ³⁵ Cl и ¹⁶ O	$1,5\times3 = 4,5 \text{ 6}.$
Число <i>e, p, n</i> для ³⁷ Cl и ¹⁸ O	$1,5 \times 3 = 4,5 \text{ 6}.$
Название иона ClO ₄	1 б.
ИТОГО	10 б.

Задача №8-2

- 1. **А** самое распространённое вещество во Вселенной. Это водород (H_2) .
- 2. Под описание бинарного вещества **Б** подходит аммиак (NH₃), дробное значение разницы молекулярных масс **Б** и **B** (19,5 г/моль), указывает на то, что в состав вещества входит хлор (Cl). Логично предположить, что вещество **B** хлороводород (HCl):

 $M(HC1) - M(NH_3) = 36.5$ г/моль – 17 г/моль = 19.5 г/моль.

Отсюда следует, что вещество \mathbf{W} – это продукт взаимодействия \mathbf{b} и \mathbf{B} . \mathbf{W} – хлорид аммония (нашатырь – трив. название)

- 3. Нетрудно рассчитать, что $M(\Gamma)$ =24 г/моль, что удовлетворяет молекулярной массе гидрида натрия (NaH). Отсюда следует, что вещество **3** хлорид натрия (NaCl).
- 4. Молекулярная масса вещества Д равна 18 г/моль или 30 г/моль. Если M(Д)=18 г/моль, то это соответствует воде (H_2O). Исходя из этого легко определяются **И** гидроксид натрия (NaOH), **E** гидроксид аммония (NH₄OH).
- 5. Реакции, указанные на схеме, приведены ниже:

$3H_2 + N_2 \rightarrow 2NH_3\uparrow$,	(1)
$H_2 + Cl_2 \rightarrow 2HCl$,	(2)
$H_2 + 2Na \rightarrow 2NaH$,	(3)
$H_2 + 0.5O_2 \rightarrow H_2O$,	(4)
$H_2O + NH_3 \rightarrow NH_3 \cdot H_2O$ (или NH_4OH),	(5)
$NH_3 + HCl \rightarrow NH_4Cl$,	(6)
$NaH + HCl \rightarrow NaCl + H_2\uparrow$,	(7)
$NaH + H_2O \rightarrow NaOH + H_2\uparrow$.	(8)

Ответ: A – H₂, **Б** – NH₃, **B** – HCl, **Г** – NaH, **Д** – H₂O, **E** – NH₄OH, **Ж** – NH₄Cl, **3** – NaCl, **И** – NaOH.

Разбалловка

№	Элемент ответа	Баллы
1.	Определение веществаА	2 б.
2	Определение веществ Б-И	$8 \times 0.5 = 4 \text{ fs.}$

3.	Уравнения реакций (1)-(8)	$8 \times 0.5 = 4 \text{ 6}.$
	ИТОГО	10 б.

Задача №8-3

1. Определим числа молей щелочей, вступивших в реакцию с неизвестной кислотой:

$$n(\text{NaOH}) = 40 \cdot 0.1/40 = 0,1$$
 моль, $n(\text{KOH}) = 35 \cdot 0.136/56 = 0,085$ моль, $n(\text{NaOH}) + n(\text{KOH}) = 0,1 + 0,085 = 0,185$ моль.

2. Определим массу неизвестной кислоты X:

$$m(\mathbf{X}) = 81.0,185 = 14,985 \text{ }\Gamma.$$

3. Предположим, что кислота X — одноосновная кислота, т.е. в реакции нейтрализации в ней может замещаться только один атом водорода. Тогда число молей кислоты равно общему числу молей щелочей, необходимых для её нейтрализации:

$$n(X) = n(NaOH) + n(KOH) = 0.185$$
 моль.

Отсюда, молекулярная масса неизвестной кислоты X равна:

$$M(\mathbf{X}) = m(\mathbf{X})/n(\mathbf{X}) = 14,985 / 0,185 = 81 г/моль.$$

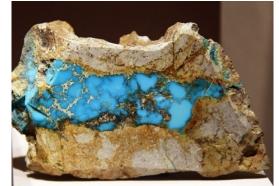
Если в состав кислоты X входит один атом водорода, тогда масса кислотного остатка равна 80 г/моль, что соответствует массе бромид-иона (Br-). Таким образом, неизвестная кислота бромоводородная кислота (HBr).

4. Определим массовые доли образовавшихся солей (NaBr и KBr):

$$\begin{aligned} HBr + NaOH &\rightarrow NaBr + H_2O, \\ \omega(NaBr) &= (0.1 \cdot 103) \cdot 100\%/(81 + 40 + 35) = 6,60\%; \\ HBr + KOH &\rightarrow KBr + H_2O, \\ \omega(KBr) &= (0.085 \cdot 119) \cdot 100\%/(81 + 40 + 35) = 6,48\%. \end{aligned}$$

Omeem: X - HBr; $\omega(NaBr) = 6,60\%$; $\omega(KBr) = 6,48\%$.

Разбалловка


N₂	Элемент ответа	Баллы
1.	Определение количества вещества КОН и NaOH	1×2 = 2 6.
2.	Определение кислоты \mathbf{X}	3 б.
3.	Определение массовых долей солей	2×2,5 = 5 6.
	ИТОГО	10 б.

Задача №8-4

1. Рассчитаем сумму массовых долей меди, алюминия, фосфора и водорода в минерале: $\omega(\text{Cu}) + \omega(\text{Al}) + \omega(\text{P}) + \omega(\text{H}) = 7,6923\% + 19,4712\% + 14,9038\% + 2,1635\% = 44,2308\%.$ Отсюда следует, что в состав минерала входит(ят) ещё элемент(ы). Логика подсказывает, что одним из неуказанных элементов является кислород, который принадлежит к числу самых распространённых элементов земной коры. Если кроме кислорода в состав минерала не входят другие элементы, то его массовая доля равна: $\omega(\text{O}) = 100 - 44,2308\% = 55,7692\%$.

2. Составим выражение для атомного фактора соединения состава $Cu_xAl_vP_zO_kH_n$:

$$x : y : z : k : n = v(Cu) : v(Al) : v(P) : v(O) : v(H) = \frac{\omega(Cu)}{A(Cu)} : \frac{\omega(Al)}{A(Al)} : \frac{\omega(P)}{A(P)} : \frac{\omega(O)}{A(O)} : \frac{\omega(H)}{A(H)} = \frac{7.6923}{64} : \frac{19.4712}{27} : \frac{14.9038}{31} : \frac{55.7692}{16} : \frac{2.1635}{1} = \frac{1}{10}$$

При растворении ртути в азотной кислоте образуется соль A_2B_2 — $Hg_2(NO_3)_2$, обработка которой щелочью приводит к оксиду AO — HgO.

Необычным свойством ртути является взаимодействие с металлами с образованием амальгам, следовательно, Π – амальгама натрия Na(Hg).

- 2. Уравнения реакций:
- (1) HgS + $O_2 \rightarrow Hg + SO_2$;
- (2) $Hg + Na \rightarrow Na(Hg)$;
- (3) $2Na(Hg) + 2NH_4Cl = 2NH_3 + 2NaCl + H_2 + 2Hg$
- (4) $6Hg + 8HNO_{3(p)} = 3Hg_2(NO_3)_2 + 2NO + 4H_2O$;
- $(5) Hg_2(NO_3)_2 + 2HC1 = Hg_2Cl_2 + 2HNO_3;$
- (6) $Hg_2(NO_3)_2 + 2NaOH = HgO + Hg + 2NaNO_3 + H_2O$;
- (7) $HgO + 2HCl = HgCl_2 + H_2O$.
- 3. A**Б** HgS киноварь;

 $A\Gamma_2$ – HgCl₂ – сулема;

 $\mathbf{A_2}\Gamma_2 - \mathbf{Hg_2}\mathbf{Cl_2} - \mathbf{к}$ аломель.

Разбалловка

Определение вещества А с расчетом	2 б.
Определение веществ АБ , A_2B_2 , $A_2\Gamma_2$, $A\Gamma_2$, АО , Д	$0.5 \times 6 = 3 \text{ fs.}$
Уравнения реакций $(1) - (7)$	$0.5 \times 7 6 = 3.5 6.$
Тривиальные названия АБ , $\mathbf{A}\Gamma_2$, $\mathbf{A}_2\Gamma_2$	$1 \times 1,5 = 1,56.$
ИТОГО	10 б.

Задача №9-2

1. Рассчитаем сумму массовых долей меди, алюминия, фосфора и водорода в минерале: $\omega(Cu) + \omega(Al) + \omega(P) + \omega(H) = 7,6923\% + 19,4712\% + 14,9038\% + 2,1635\% = 44,2308\%$.

Отсюда следует, что в состав минерала входит(ят) ещё элемент(ы). Логика подсказывает, что одним из неуказанных элементов является кислород, который принадлежит к числу самых распространённых элементов земной коры. Если кроме кислорода в состав минерала не входят другие элементы, то его массовая доля равна: $\omega(O) = 100 - 44,2308\% = 55,7692\%$.

2. Составим выражение для атомного фактора соединения состава $Cu_xAl_vP_zO_kH_n$:

$$x: y: z: k: n = v(Cu): v(Al): v(P): v(O): v(H) = \frac{\omega(Cu)}{A(Cu)}: \frac{\omega(Al)}{A(Al)}: \frac{\omega(P)}{A(P)}: \frac{\omega(O)}{A(O)}: \frac{\omega(H)}{A(H)} = \frac{7.6923}{64}: \frac{19.4712}{27}: \frac{14.9038}{31}: \frac{55.7692}{16}: \frac{2.1635}{1} = \frac{14.9038}{1}$$

$$= 0.12019 : 0.72116 : 0.48077 : 3.4856 : 2.1635 =$$

= 1:6:4:29:18.

Таким образом, молекулярная формула неизвестного минерала — $CuAl_6P_4O_{29}H_{18}$ — гидратированный двойной гидроксофосфат алюминия и меди ($CuAl_6(PO_4)_4(OH)_8\cdot 5H_2O$). Этот минерал известен как бирюза,

Ombem: $CuAl_6(PO_4)_4(OH)_8 \cdot 5H_2O$.

Разбалловка

№	Элемент ответа	Баллы
1.	Гипотеза о наличии кислорода в минерале	2 6.
2.	Составление атомного фактора	4 б.
3.	Установление химической формулы бирюзы (в любой форме)	2 б.