Критерии оценивания заданий Теоретического тура

Задания 7-8 класса

Задача №8-1

- 1. Кислота \mathbf{K} , содержащая 31.6327% по массе фосфор ортофосфорная. Количество кислоты: $(160 \cdot 0.06125)/98 = 0.1$ моль. Итак, $\mathbf{K} \mathrm{H}_3\mathrm{PO}_4$.
- 2. Поскольку после смешения растворов ортофосфорной кислоты и соли C образуется раствор соли Д, то логично предположить, что соль C одна из солей ортофосфорной кислоты. Из возможных вариантов (Na₂HPO₄ и Na₃PO₄) подходит гидрофосфат натрия Na₂HPO₄ (ω_{Na} =32.3944%). Количество соли: (125·0.1136)/141 = 0.1 моль. Итак, C Na₂HPO₄.
 - 3. Между кислотой и солью в растворе протекает реакция:

 $H_3PO_4 + Na_2HPO_4 \rightarrow 2NaH_2PO_4$.

Поскольку вещества взяты в эквимолярных количествах, то количество образовавшегося дигидрофосфата натрия (NaH_2PO_4) (вещество Д) равно 0.2 моль. Массовая доля полученной соли в растворе: $120 \cdot 0.2 \cdot 100\%/(160+125) = 8.421\%$.

Ответ: K - H_3PO_4 ; C - Na_2HPO_4 ; Д - NaH_2PO_4 ; $\omega(NaH_2PO_4) = 8.421\%$.

Разбалловка

$N_{\underline{0}}$	Элемент ответа	Баллы
1.	Соединения К, С и Д	$2 \times 3 = 6$ 6.
2	Уравнение реакции	2 б.
3.	Расчёт массовой доли соли в конечном растворе	2 б.
	Итого	10 баллов

Задача №8-2

1. Определим фторид **B2**, имеющего состав $\Im F_n$. Молекулярная масса $\Im F_n$ равна:

 $M(\Im F_n) = A(F) \cdot n \cdot 100\% / \omega(F) = 19 \cdot n \cdot 100\% / 48.718 = 39 \cdot n$

при n=1 получаем $M(\Im F_n)=39$ г/моль, $A(\Im)=20$ г/моль – не подходит;

при n=2 получаем $M(\Im F_n)$ =78 г/моль, $A(\Im)$ =40 г/моль – соответствует Ca.

Итак, ${\bf B2}$ — фторид кальция (CaF₂); следовательно, ${\bf B1}$ — оксид кальция (CaO). Числа молей CaO и CaF₂ равныи составляют 28.792/78=0.369 моль.

2. Судя по описанию (растворяется в плавиковой кислоте и является одним из самых распространённых соединений в земной коре), оксидом C1 скорее всего является оксид кремния (SiO₂). Реакция SiO₂ с избытком плавиковой кислоты протекает по уравнению:

 $SiO_2 + 6HF \rightarrow H_2[SiF_6].$

В $H_2[SiF_6]$ массовая доля водорода равна 1.3889%. Таким образом, подтверждается вывод о том, что C1 это SiO_2 , а соединение C2 - $H_2[SiF_6]$. Число молей SiO_2 равно 66.6/60=1.11 моль.

3. Аптекарская бура — одно из самых распространённых соединений бора $Na_2B_4O_7\cdot 10H_2O$ ($\omega_O=71.2\%$). Следовательно, третьим оксидом (A1) в составе "... стекла" является оксид бора (B_2O_3). Определим соединение A2, имеющего в своём составе m атомов H. Молекулярная масса A2 равна:

 $M(A2) = A(H) \cdot m \cdot 100\% / \omega(H) = 1 \cdot m \cdot 100\% / 1.1364 = 88 \cdot m.$

при m=1 получаем $M(\mathbf{A2})$ =88 г/моль, $M(\mathbf{A2})$ - A(H) - A(B) =76 г/моль, что соответствует массе четырёх атомов F; следовательно $\mathbf{A2}$ - $H[BF_4]$.

Число молей B_2O_3 в 100 г "... стекла" равно $(100-66.6-0.369\cdot56)/70=0.182$ моль.

"... стекло" называется боросиликатное; его состав:

 $v(B_2O_3):v(CaO):v(SiO_2)=0.182:0.369:1.11=1:2:6$

4. Уравнения реакций:

 $CaO + 2HF \rightarrow CaF_2 \downarrow + H_2O;$

 $SiO_2 + 6HF \rightarrow H_2[SiF_6];$

 $B_2O_3 + 8HF \rightarrow 2H[BF_4] + 3H_2O;$

 $\text{H}_2[\text{SiF}_6] + 3\text{Na}_2\text{CO}_3 \xrightarrow{t^\circ\text{C}} 6\text{NaF} + \text{SiO}_2 \downarrow + 3\text{CO}_2 \uparrow + \text{H}_2\text{O};$

 $4H[BF_4] + 9Na_2CO_3 \xrightarrow{t^{\circ}C} Na_2B_4O_7 + 9CO_2 \uparrow + 16NaF + 2H_2O.$

Ответ: боросиликатноестекло $-B_2O_3 \cdot 2CaO \cdot 6SiO_2 \cdot$; **A1** $-B_2O_3$; **B1** - CaO; **C1** $-SiO_2$; **A2** $-H[BF_4]$; **B2** $-CaF_2$; **C2** $-H_2[SiF_6]$; **A3** - Na₂B₄O₇·10H₂O.

Разбалловка

No	Элемент ответа	Баллы
1.	Соединения А1, В1, С1, А2, А3, В2 и С2	1×7 = 7 б.
2	Уравнения реакций	$0.5 \times 5 = 2.5$ 6
3.	Состав и название боросиликатного стекла	0.5 б.
	Итого	10 баллов

Задача №8-3

1. Определить элемент **X** можно разными способами. Один их них – с помощью вещества **3**. Соединение **3** – бинарное. Из уравнения реакции следует, что это хлорид (ω_{Cl} =83.53%). Представим **3** как **X**Cl_n, тогда молекулярная масса **3** равна:

 $M(3) = A(C1) \cdot n \cdot 100\% / \omega(C1) = 35.5 \cdot n \cdot 100\% / 83.53 = 42.5 \cdot n.$

при n=1 получаем M(3)=42.5 г/моль, A(X)=7 г/моль – соответствует литию (Li);

при n=2 получаем M(3)=78 г/моль, A(X)=14 г/моль – соответствует азоту (N);

при n=3 получаем M(3)=127.5 г/моль, A(X)=21 г/моль – не подходит;

при n=4 получаем M(3)=170 г/моль, A(X)=28 г/моль – соответствует кремнию (Si).

Из трёх элементов (Li, N и Si) условию задачи удовлетворяет Si, т.к. хлорид азота (II) не известен, а Li не вступает в реакцию с Na (см. реакцию 14). Итак, \mathbf{X} – кремний (Si), а $\mathbf{3}$ – хлорид кремния (IV) (SiCl₄).

2. По массовой доле кремния в бинарных соединениях **A**, **B**, Γ , Π , **E**, \mathbb{K} , \mathbb{K} ,

вещество	ω_{Si} , %	вещество	ω_{Si} , %
A	SiO	3	SiCl ₄
В	SiO ₂	И	Si ₃ N ₄
Γ	Mg ₂ Si	К	Si ₃ Cl ₈
Д	SiH ₄	Л	Si ₃ H ₈
E	SiC	M	Na ₄ Si ₄
Ж	SiF ₄	0	Si ₂ H ₆

- 3. Вещество **Б** $H_2[SiF_6]$, что следует из описания этого соединения и условий реакции 2.
- 4. По молекулярной массе **H** (66.5 г/моль) и условий реакции 15 следует, что **H** SiH_3Cl .
- 5. Уравнения реакций:

1)
$$Si + SiO_2 \xrightarrow{1100-1400^{\circ}C} 2SiO;$$

2)
$$4\text{SiO} + \text{AgClO}_4 + 24\text{HF}_{\text{H36}} \rightarrow 4\text{H}_2[\text{SiF}_6] + \text{AgCl} \downarrow + 8\text{H}_2\text{O};$$

3)
$$H_2[SiF_6] + 3Na_2CO_3 \xrightarrow{t^{\circ}C} 6NaF + SiO_2 \downarrow + 3CO_2 \uparrow + H_2O;$$

4)
$$\operatorname{SiO}_2 + 2\operatorname{Mg} \xrightarrow{700-900^{\circ}C} \operatorname{Si} + 2\operatorname{MgO}$$
;

4)
$$SiO_2 + 2Mg \xrightarrow{700-900^{\circ}C} Si + 2MgO;$$

5) $SiO_2 + 4Mg_{H36} \xrightarrow{700-900^{\circ}C} Mg_2Si + 2MgO;$
6) $Mg_2Si + 4HCl \longrightarrow SiH. \uparrow + 2MgCl_2;$

6)
$$Mg_2Si + 4HCl_{p-p} \rightarrow SiH_4 \uparrow + 2MgCl_2$$
;

7)
$$SiH_4 \xrightarrow{>400^{\circ} \text{ C}} Si + 2H_2;$$

8) $Si + C \xrightarrow{1200-1300^{\circ} \text{ C}} SiC;$

8)
$$Si + C \xrightarrow{1200-1300^{\circ}C} SiC$$

9) SiC +
$$4F_2 \rightarrow SiF_4 \uparrow + CF_4 \uparrow$$
;

10)
$$\operatorname{Si} + 2\operatorname{Cl}_2 \xrightarrow{340-420^{\circ} \, \text{C}} \operatorname{SiCl}_4$$

12)
$$Si + 2SiCl_4 \xrightarrow{paspso} Si_3Cl_8$$
;

13)
$$Si_3Cl_8 + 2LiAlH_4 \rightarrow Si_3H_8 \uparrow + 2LiCl + 2AlCl_3;$$

14)
$$4Si + 4Na \xrightarrow{t^{\circ}C} Na_4Si_4$$
;

15)
$$SiH_4 + 2AgCl \xrightarrow{t^{\circ}C} SiH_3Cl + 2Ag + HCl;$$

16)
$$SiH_3Cl + 2Na \xrightarrow{t^{\circ}C} Si_2H_6 + 2NaCl.$$

Otbet: A - SiO; $B - H_2[SiF_6]$; $B - SiO_2$; $\Gamma - Mg_2Si$; $\Pi - SiH_4$; E - SiC; $\mathcal{K} - SiF_4$; $\mathcal{J} - SiCl_4$; $\mathcal{J} - SiH_4$; \mathcal{J} Si_3N_4 ; **K** - Si_3Cl_8 ; **J** - Si_3H_8 ; **M** - Na_4Si_4 ; **H** - SiH_3Cl ; **O** - Si_2H_6 .

Разбалловка

1 430444400744		
No॒	Элемент ответа	Баллы
1.	Определение элемента \mathbf{X}	1 б.
2.	Соединения А-О (кроме Б и Н)	$0.25 \times 12 = 3$ б.
3.	Соединения Б и Н	1×2 = 2 б.
4.	Уравнения реакций 1-16	$0.25 \times 16 = 4 \text{ fs.}$
	Итого	10 баллов

Задача № 8-4

1. При термическом разложении карбонатов всегда выделяется углекислый газ (СО₂), который при взаимодействии с известковой водой (Са(ОН)2) (Г) образует осадок карбоната кальция ($CaCO_3$) (Д):

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O.$$

По массе образовавшегося СаСО₃ определим число молей и массу СО₂:

$$\nu(CaCO_3) = \nu(CO_2) = 20/100 = 0.2$$
 моль; $m(CO_2) = 0.2.44 = 8.8$ г.

Потеря массы при прокаливании смеси карбонатных минералов составила $50.5 \cdot 0.2099 = 10.6$ г, что, очевидно, больше массы выделившегося СО2. Логично предположить, что разница масс 10.6 - 8.8 = 1.8 г соответствует массе воды, которая также выделяется при термическом разложении малахита (А) по уравнению:

```
(CuOH)_2CO_3 \xrightarrow{t^\circ C} 2CuO + CO_2 \uparrow + H_2O \uparrow.
```

По уравнению реакции видно, что $\nu(H_2O) = \nu((CuOH)_2CO_3) = 1.8/18 = 0.1$ моль; $m((CuOH)_2CO_3) = 0.1 \cdot 222 = 22.2$ г.

2. Белый осадок вещества **E** вероятно труднорастворимый сульфит неизвестного металла. Определим молекулярную массу **E**:

$$M(E) = A(S) \cdot n \cdot 100\% / \omega(S) = 32 \cdot n \cdot 100\% / 14.7465 = 217 \cdot n,$$

(где n – число атомов серы (SO_3^2 -остатков) в сульфите **E** ($Me_m(SO_3)_n$);

при n=1 получаем M(E)=217 г/моль, $m \cdot A(Me)$ = $M(E) - M(SO_3^2) = 217 - 80 = 137$ г/моль – соответствует барию (Ba). Таким образом, одним из минералов может быть BaCO₃ (отавит (**Б**) или витерит (**B**)?). Число молей и масса BaCO₃:

$$\nu(BaCO_3) = \nu(BaSO_3) = 21.7/217 = 0.1 \text{ моль}; m(BaCO_3) = 0.1 \cdot 197 = 19.7 \text{ г.}$$

3. Определим молекулярную массу оксида **И** (Me'_nO_m):

$$M(\mathbf{H}) = A(O) \cdot m \cdot 100\% / \omega(O) = 16 \cdot m \cdot 100\% / 12.5 = 128 \cdot m;$$

при m=1 получаем M(\mathbf{M})=128 г/моль, n·A(\mathbf{Me} ')=M(\mathbf{M}) – A(O) = 128 – 16 = 112 г/моль – соответствует кадмию (Ba). Таким образом, третьим из возможных минералов (отавит (\mathbf{F}) или витерит (\mathbf{B})) может быть CdCO₃. Число молей и масса CdCO₃:

$$\nu(CdCO_3) = \nu(CdO) = 6.4/100 = 0.05 \text{ моль}; m(CdCO_3) = 0.05 \cdot 172 = 8.6 \text{ г}.$$

- 4. Сложив массу найденных карбонатов ($22.2 + 8.6 + 19.7 = 50.5 \, \Gamma$) убеждаемся, что никаких других компонентов в исходной смеси карбонатных минералов нет. Кроме того, по отношению масс витерита и отавита устанавливаем, что $BaCO_3$ витерит, а $CdCO_3$ отавит. Кроме того, яркую синюю окраску раствору придаёт соединение 3 [$Cu(NH_3)_4$] Cl_2 .
 - 5 Уравнения реакций:

1)
$$(CuOH)_2CO_3 \xrightarrow{t^\circ C} 2CuO + CO_2 \uparrow + H_2O \uparrow;$$

2)
$$CdCO_3 \xrightarrow{t^{\circ}C} CdO + CO_2 \uparrow$$
;

3) BaCO₃
$$\xrightarrow{t^{\circ}C}$$
 BaO + CO₂ \uparrow ;

4)
$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$$
;

5)
$$CuO + 2HCl_{p-p} \rightarrow CuCl_2 + H_2O$$
;

6) CdO + 2HCl_{p-p}
$$\rightarrow$$
CdCl₂ + H₂O;

7) BaO + 2HCl_{p-p}
$$\rightarrow$$
 BaCl₂ + H₂O;

8)
$$BaCl_2 + Na_2SO_{3p-p} \rightarrow BaSO_3 \downarrow + 2NaCl;$$

9)
$$CdCl_2 + 2NH_3 \cdot H_2O \rightarrow Cd(OH) \downarrow + 2NH_4Cl;$$

$$10) \; CuCl_2 + 4NH_{3p\text{-}p} \hspace{-0.5cm} \rightarrow [Cu(NH_3)_4]Cl_2;$$

11)
$$Cd(OH)_2 \xrightarrow{t^{\circ}C} CdO \downarrow + H_2O \uparrow$$
.

Ответ: Малахит (**A**) - (CuOH)₂CO₃; отавит (**Б**) - CdCO₃; витерит (**B**) - BaCO₃; Γ - Ca(OH)₂; Π - CaCO₃; Π - CaCO₃; Π - CdCO₃; Π -

Разбалловка

No	Элемент ответа	Баллы
1.	Соединения А-И	$0.5 \times 9 = 4.5 \text{ fs.}$
2	Уравнения реакций 1-11	0.5×11 = 5.5 б.
	Итого	10 баллов

Задача №8-5

- 1. Выделившийся газ \mathbf{F} аммиак, что подтверждается расчётом: $M(\mathbf{F}) = 0.759 \cdot 22.4 = 17$ г/моль. Следовательно, фрагмент \mathbf{X} катион аммония ($\mathrm{NH_4}^+$).
- 2. Из условия следует, что при прокаливании остаётся только оксид A, возможный состав которого Y_2O_3 . Исходя из этого запишем схему реакции разложения (все газообразные продукты можно просто обозначить как "газы"):

 $(\mathbf{NH_4})_2 \mathbf{SO_4} \cdot \mathbf{Y_2} (\mathbf{SO_4})_3 \cdot \mathbf{zH_2O} \xrightarrow{t^{\circ}\mathbf{C}} \mathbf{Y_2O_3} + 2\mathbf{NH_3} \uparrow + 4\mathbf{SO_2} \uparrow + 2.5\mathbf{O_2} \uparrow + \mathbf{zH_2O} \uparrow.$

Очевидно, что массовая доля Y_2O_3 в $(NH_4)_2SO_4\cdot Y_2(SO_4)_3\cdot zH_2O$ равна 100-60.5114=39.4886%. Отсюда,

 $39.4886 = (2 \cdot A(Y) + 3 \cdot 16) \cdot 100\% / (2 \cdot 18 + 4 \cdot 96 + 2 \cdot A(Y) + z \cdot 18),$

 $39.4886 = (2 \cdot A(Y) + 3 \cdot 16) \cdot 100\% / (2 \cdot 18 + 4 \cdot 96 + 2 \cdot A(Y) + z \cdot 18),$

 $16585.212 + 78.9772 \cdot A(Y) + 710.7948 \cdot z = 200 \cdot A(Y) + 4800$

 $11785.212 = 121.0228 \cdot A(Y) - 710.7948 \cdot z;$

при z=1 получаем A(Y) = 103.3 г/моль – не подходит;

при z=2 получаем A(Y) = 109.1 г/моль – не подходит;

при z=3 получаем A(Y) = 114.9 г/моль – подходит In (Y), следовательно $A - In_2O_3$; искомое соединение - $(NH_4)_2SO_4\cdot In_2(SO_4)_3\cdot 3H_2O$

3. Взаимодействие $(NH_4)_2SO_4 \cdot In_2(SO_4)_3 \cdot 3H_2O$ с раствором щелочи описывается уравнением: $(NH_4)_2SO_4 \cdot In_2(SO_4)_3 \cdot 3H_2O + 8NaOH \rightarrow 2NH_3 \uparrow + 2In(OH)_3 \downarrow + 4Na_2SO_4 + 5H_2O$. Вещество**В** - In(OH)₃.

Ответ: $(NH_4)_2In_2(SO_4)_4 \cdot 3H_2O$, $X - NH_4^+$; Y - In; $A - In_2O_3$; $B - NH_3$; $B - In(OH)_3$.

Разбалловка

1	Определение Б и Х	$1.5 \times 2 = 3$ б.
2	Определение Ү	4б.
3	Определение А и В	$1.5 \times 2 = 3$ б.
	Итого:	10 б