

Международная математическая олимпиада «Формула Единства» / «Третье тысячелетие» 2023-2024 учебный год. Заключительный этап

Решения задач для 6 класса

Полное решение каждой задачи оценивается в 7 баллов. Для некоторых задач есть частные критерии, указанные ниже.

1. В каждом ли году календари на какие-то два месяца полностью совпадают (иными словами, какие-то два месяца имеют одинаковую длину и начинаются в один и тот же день недели)?

(П. Д. Муленко)

Примечание. Ниже приведена справочная таблица месяцев года с количеством дней:

1. Январь	31	5. Май	31	9. Сентябрь	30
2. Февраль	28 (29)	6. Июнь	30	10. Октябрь	31
3. Март	31	7. Июль	31	11. Ноябрь	30
4. Апрель	30	8. Август	31	12. Декабрь	31

Ответ: Да. В невисокосный год совпадают январь с октябрём, а в високосный — январь с июлем.

Решение. Действительно, в невисокосный год количество дней в первых 9 месяцах равно 365-31-30-31=273. Оно делится на 7, поэтому 1 октября — тот же день недели, что и первое января. Продолжительность января и октября также совпадает. В високосный год продолжительность первых шести месяцев (31+29+31+30+31+30=182) делится на 7, и продолжительность января и июля также совпадает.

Критерии. Только ответ "Да" – 0 баллов.

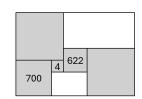
Только ответ с указанием конкретных месяцев – 2 балла.

Показано, что описанная ситуация может иметь место в обычном году, либо в високосном году (но не в обоих) — 2 балла.

Задача решена в предположении, что год начинается с понедельника — 5 баллов.

2. Прямоугольник разрезали на белые прямоугольники и серые квадраты, как показано на рисунке, после чего вычислили периметры трёх получившихся частей (указаны внутри). Найдите периметр исходного прямоугольника.

(П. Д. Муленко)



Решение. Все три части, в которых вычислили периметры — квадраты, поэтому их стороны равны 175, 1 и 155,5, соответственно. Тогда сторона левого верхнего квадрата равна 175+1=176, а правого нижнего — 175+155,5-1=329,5. Тогда левая сторона исходного прямоугольника равна 176+175=351, а нижняя — 176+155,5+329,5=661, то есть периметр равен $2 \cdot (351+661)=2024$.

Критерии. Каждая арифметическая ошибка – 1 балл.

Каждая ошибка другого рода (пропущена одна из сторон при суммировании, периметр делится на 2 вместо 4, найдена площадь вместо периметра и др.) при верном плане решения — -2 балла.

3. Некое приложение генерирует одноразовые пароли в виде последовательностей из 4 цифр. Паша посмотрел на последние три пароля — 1258, 0896, 7452 — и осознал, что у них есть общее свойство: при наборе каждого из них на цифровой клавиатуре палец каждый раз переходит на соседнюю по стороне кнопку, причём возвращаться на предыдущую кнопку нельзя. А сколько всего существует паролей с такими свойствами? (А. А. Теслер)

1 2 3

4 5 6

7 8 9

0

Решение. Так как возвращаться на предыдущую кнопку нельзя, то цифра 0 может появиться в начале или в конце. Если цифра 0 первая, то дальше точно 8, и пятью способами пароль можно закончить (0874, 0896, 0852, 0854, 0856). Если пароль оканчивается нулём, то получатся те же 5 паролей, записанных справа налево.

Если же нуля нет, то пароль полностью расположен в квадрате 3×3 . Если он начинается в центре, то имеется 8 паролей (4 варианта второй цифры, 2 варианта третьей, 1 последней); если он начинается на стороне, то существует 5 вариантов для 2-й и 3-й цифр и 2 варианта для последней; если он начинается в углу, то имеется 2 варианта второй цифры и 4 варианта для двух последних. Итого $5 \cdot 2 + 8 + 4 \cdot 5 \cdot 2 + 4 \cdot 2 \cdot 4 = 90$ паролей.

4. Найдите все числа, образованные цифрами от 1 до 9 (каждая цифра встречается по одному разу), так что: двузначное число из первых двух цифр (слева направо) делится на 2; двузначное число, образованное второй и третьей цифрами, делится на 3; и так далее (соответственно, число, образованное восьмой и девятой цифрами, делится на 9).

 $(\Lambda. C. Корешкова)$

Ответ: 781254963 или 187254963.

Решение. Обозначим цифры итогового числа буквами: $\overline{ABCDEFGHI}$. Тогда числа \overline{AB} , \overline{CD} , \overline{EF} и \overline{GH} — чётные, то есть цифры B, D, F, H — чётные (соответственно, остальные — нечётные). Тогда, раз число \overline{DE} делится на 5, то E=5, и вторая половина числа восстанавливается однозначно ($\overline{ABCD54963}$). Остаются цифры 1, 7 и 2, 8. Число \overline{CD} должно делиться на 4, поэтому D точно равно 2 (ни 18, ни 78 на 4 не делятся), тогда B=8. Остаются цифры A и C, которые обе могут быть равны и 1, и 7.

Критерии. Если верно определены все цифры которые можно однозначно определить и найден только 1 вариант ответа — 5 баллов

Если верно однозначно определены только последние 6 цифр числа (или приведен верный ответ без объяснения) — 2 балла

5. Археолог наткнулся на пещеру, в которой стоят 6 сундуков, на каждом из которых что-то написано. Некоторые из сундуков могут оказаться мимиками (монстрами, прикидывающимися сундуками), а в остальных лежит золото. Известно, что на мимиках написана ложь, на настоящих сундуках — правда. Подскажите археологу, какие сундуки с золотом, а какие — мимики.

(П. Д. Муленко)

Подо мной не мимик

В нижнем ряду есть хотя бы один мимик

Оба моих соседа по стороне — не мимики

В верхнем ряду есть хотя бы один мимик

Среди сундуков есть ровно 1 мимик

Я не мимик

Ответ: оба левых и средний верхний с золотом, остальные — мимики.

Решение. Точно не мимики два левых сундука (если верхняя левая надпись лжёт, то левая нижняя этому противоречит). Тогда правый верхний сундук — мимик (если нет, то в верхнем ряду нет мимика), и хотя бы один из его соседей тоже мимик, поэтому средний нижний сундук тоже точно мимик, из-за чего средний верхний мимиком быть не может, то есть правый нижний — мимик.

Критерии. Если указано что 2 левых сундука с золотом — 1 балл. Если перечисленны все сундуки с золотом — 3 балла

6. На конференцию по математике в отель заселились 120 человек. В первый вечер они все распределились между четырьмя локациями: стойкой регистрации, баром, столовой и конференц-залом. Число посетителей бара составляет пятую часть от количества людей в столовой; а на стойке регистрации в восемь раз меньше людей, чем в конференц-зале. Когда в какой-то момент десять учёных перешли из столовой в конференц-зал, а шестеро из бара подошли к стойке регистрации, то у стойки регистрации стало в шесть раз меньше людей, чем в столовой. Сколько человек первоначально находилось в каждой локации гостиницы?

(Л. С. Корешкова)

Решение. Пусть изначально в баре было x человек, тогда в столовой 5x, на стойке регистрации (120-6x):9, в конференц-зале $8\cdot(120-6x):9$. Когда люди перешли, на стойке регистрации стало на 6 человек больше, а в столовой на 10 меньше. Получаем уравнение $6\cdot\left(\frac{120-6x}{9}+6\right)=5x-10$, из которого x=14, то есть в баре было 14 человек, в столовой -70, на регистрации -4, и в конференц-зале -32 человека.

Критерии. Верный ответ без обоснования -2 балла.