Задача А. Блочная сортировка

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Васе недавно подарили перестановку из n чисел. Он очень любит играть с перестановками. Играет он так: сначала перемешивает её, затем разбивает её на k непустых блоков так, что каждый элемент перестановки принадлежит ровно одному блоку. После этого Вася сортирует каждый из k блоков перестановки по отдельности. Вася хочет, чтобы после этого вся перестановка была отсортирована.

В этот раз ему подарили слишком большую перестановку, поэтому после того, как Вася перемешал перестановку, он понял, что не знает какие именно выбрать блоки. Помогите ему разбить перестановку ровно на k блоков или скажите, что это невозможно сделать.

Более формально, перестановку требуется разбить на ровно на k непустых подотрезков (каждый элемент должен принадлежать **ровно** одному подотрезку) так, чтобы если отсортировать элементы каждого из этих подотрезков по-отдельности, то в итоге получится отсортированный массив.

Перестановкой является массив, состоящий из n различных целых чисел от 1 до n в произвольном порядке. Например, [2,3,1,5,4] — перестановка, но [1,2,2] не перестановка (2 встречается в массиве дважды) и [1,3,4] тоже не перестановка (n=3, но в массиве встречается 4).

Последовательность a является непустым подотрезком b, если a содержит хотя бы один элемент и a может быть получена из b удалением нескольких (возможно, ни одного) элементов из начала и нескольких (возможно, ни одного) элементов из конца b.

Формат входных данных

Первая строка содержит два целых числа n и k $(1 \le k \le n \le 2 \cdot 10^5)$ — размер перестановки и число блоков, на которые её надо разбить.

Вторая строка содержит n различных целых чисел p_1, p_2, \ldots, p_n $(1 \leqslant p_i \leqslant n)$ — значения чисел в перестановке.

Формат выходных данных

В единственной строке выведите k чисел — длины блоков, на которые надо разбить перестановку (сумма длин блоков должна равняться n). Если решений несколько, разрешается вывести любое из них. Если так разбить массив на k блоков невозможно, выведите единственное число -1.

Примеры

стандартный ввод	стандартный вывод		
5 2	3 2		
2 3 1 5 4			
5 1	5		
2 1 4 3 5			
5 3	-1		
4 3 2 1 5			

Замечание

В первом наборе входных данных можно разбить перестановку на 2 блока так: [2,3,1] и [5,4]. Отдельно их отсортировав получим: [1,2,3] и [4,5]. Если соединить их, то получится отсортированная последовательность.

Во втором наборе входных данных нужно разбить перестановку на 1 блок, и это можно сделать единственным способом: [2,1,4,3,5]. Отсортируем единственный блок и получим отсортированную последовательность.

В третьем наборе входных данных можно показать, что разбиения на блоки не существует.

Система оценки

Тесты к этой задаче состоят из 4 групп, не считая тесты из условия. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп.

Группа	Баллы Доп. ограничения п		Необх. группы	Комментарий
0	0	_	_	Тесты из условия.
1	21	$n \leqslant 100$	0	
2	22	$n \leqslant 1000$	0, 1	
3	18	$n \leqslant 10000$	0-2	
4	39	$n \leqslant 200000$	0-3	

Задача В. Особенные числа

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Число a называется палиндромом, если оно читается одинаково справа налево и слева направо. Число a называется особенным, если оно палиндром и число $11 \cdot a$ тоже палиндром. Вам дано n запросов, в каждом из них вы должны найти количество особенных чисел от 1 до a_i . Так как ответ может быть большим, найдите результат по модулю $10^9 + 7$.

Формат входных данных

В первой строке вводится единственное целое число $n\ (1\leqslant n\leqslant 1000)$ — количество запросов.

В следующих n строках вводится по одному числу a_i ($1 \le a_i \le 10^{5000}$) — i-й запрос.

Формат выходных данных

Для каждого запроса в отдельной строке выведите единственное целое число — количество особенных чисел от 1 до a_i по модулю $10^9 + 7$.

Пример

стандартный ввод	стандартный вывод		
5	9		
10	13		
45	13		
79	15		
113	43		
467			

Замечание

В примере при $a_i = 10$ особенные числа меньшие 10 это: 1, 2, 3, 4, 5, 6, 7, 8, 9. При $a_i = 45$ особенные числа это: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44.

Система оценки

Тесты к этой задаче состоят из 6 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов необходимых групп. **Offline-проверка** означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Группа	Forms	Доп. ограничения		Нообу прушил	V ox ox ox ox ox ox ox ox	
Группа	Баллы	a_i	n	Необх. группы	Комментарий	
0	0	_	_	-	Тесты из условия.	
1	15	$a_i \leqslant 70000$	$n \leqslant 100$	0		
2	9	$a_i \leqslant 2 \cdot 10^6$	_	0, 1		
3	14	$a_i \leqslant 10^8$	$n \leqslant 100$	0, 1		
4	11	$a_i \leqslant 10^{11}$	_	0–3		
5	25	$a_i \leqslant 10^{18}$	_	0–4		
6	26	_	_	0–5	Offline-проверка	

Задача С. Доставка еды

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 3 секунды Ограничение по памяти: 1024 мегабайта

Столица Берляндии — огромный город, в котором есть n перекрёстков, пронумерованных целыми числами от 1 до n.

Движение по городу организованно особым образом. Всего в городе есть m односторонних дорог, i-я из которых выходит из перекрёстка a_i и входит в перекрёсток b_i . У некоторых дорог есть их продолжения. При въезде на перекрёсток по дороге c номером c и выезде по дороге c дорога является продолжением c-й, то время проезда по дороге c будет на секунду меньше времени проезда по дороге c (но если по дороге c время движения было равно c), то по дороге c время движения тоже будет равно c). Если же дорога c0 не является продолжением c0, то машине придётся сбросить скорость для поворота и время проезда по дороге c0 будет равно c1.

Более формально, для каждой дороги зафиксировано число d_i , обозначающее продолжение дороги. Если d_i равно -1, то у i-й дороги нет продолжения, а если $d_i > 0$, то продолжением дороги i является дорога с номером d_i .

Для каждой дороги зафиксировано время первоначального проезда по ней, равное c_i . При движении по некоторому пути время проезда по дороге с номером i определяется следующим образом:

- Если дорога i является первой на пути или не является продолжением предыдущей на пути, то время проезда по ней равно c_i .
- Если дорога i является продолжением предыдущей на пути и по предыдущей дороге машина двигалась x секунд, то время движения по текущей дороге равно max(0, x 1) секунде.

Недавно вы открыли новый ресторан на перекрёстке с номером 1 и хотите начать доставлять еду в разные точки города. Для каждого перекрёстка вы хотите узнать, за какое минимальное время можно доставить еду на этот перекрёсток, начиная движение с перекрёстка номер 1.

Формат входных данных

В первой строке даны три целых числа n, m и g $(1 \leqslant n, m \leqslant 500\,000, 0 \leqslant g \leqslant 10)$ — число перекрёстков в городе, число дорог в городе и номер группы тестов.

В следующих m строках даны по четыре целых числа a_i , b_i , c_i и d_i ($1 \le a_i, b_i \le n$, $1 \le c_i \le 10^9$, $d_i = -1$ или $1 \le d_i \le m$) — начало i-й дороги, конец i-й дороги, время первоначального проезда по i-й дороге и номер продолжения i-й дороги ($d_i = -1$ если у i-й дороги нет продолжения).

Гарантируется, что если у дороги есть продолжение, то оно выходит из перекрёстка b_i . Также гарантируется, что если $d_i \neq -1$, то $c_{d_i} \geqslant c_i - 1$. Обратите внимание, что между одной и той же парой перекрёстков может проходить несколько дорог, одна дорога может быть продолжением нескольких дорог, а так же у разных дорог, входящих в перекрёсток, могут быть разные продолжения.

Формат выходных данных

В единственной строке выведите n чисел, i-е из них должно быть равно минимальному времени, за которое можно доставить еду до перекрёстка номер i. Если доставить еду до перекрёстка номер i нельзя, выведите -1.

Примеры

стандартный ввод	стандартный вывод
3 2 0	0 5 9
1 2 5 2	
2 3 10 -1	
5 4 0	0 5 8 12 -1
1 2 5 4	
3 4 10 -1	
1 3 8 2	
2 3 7 2	
4 4 0	0 10 -1 17
1 2 10 3	
2 2 4 3	
2 4 9 4	
4 1 10 1	
4 5 0	0 1 1 1
1 2 10 -1	
1 3 1 3	
3 4 7 4	
4 2 6 5	
2 2 5 5	

Замечание

В первом примере до перекрёстка 2 можно доехать по дороге 1 за 5 секунд. Чтобы доехать до перекрёстка 3, надо сначала проехать по дороге 1, а затем по её продолжению дороге 2. За счёт того, что дорога 2 является продолжением дороги 1, время движения по ней составит 4 секунды, поэтому до перекрёстка 3 можно доехать за 9 секунд.

Во втором примере можно добраться до перекрёстка 2 за 5 секунд по дороге 1. До перекрёстка 3 можно добраться за 8 секунд по дороге 3. До перекрёстка 4 можно добраться за 12 секунд по дорогам с номерами 1, 4, 2. Время движения по ним составит 5+4+3=12 секунд. До перекрёстка 5 доехать никак нельзя, так как в него не входит ни одна дорога.

В третьем примере оптимальный путь до перекрёстка 4 пройдёт по дорогам 1, 2, 3, время движения будет равно 10+4+3=17.

Система оценки

Тесты к этой задаче состоят из 10 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Оffline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Длинный тур отборочного этапа Открытой олимпиады школьников 2022–2023 учебного года Россия. 21 ноября 2022 – 15 января 2023

D	Г	Доп. ограничения			Наобу рругия	V
Группа	Баллы	n	m	c_i	Необх. группы	Комментарий
0	0	_	_	_	_	Тесты из условия.
1	10	$n \leqslant 1000$	$m \leqslant 1000$	_	0	
2	8	$n \leqslant 10000$	$m \leqslant 10000$	_	0, 1	
3	9	_	_	_	_	$У$ всех дорог $d_i = -1$
4	9	_	_	$c_i = 1$	_	
5	11	$n\leqslant 100000$	$m\leqslant 100000$	$c_i \leqslant 10$	0	
6	16	_	_	_	3	Каждая дорога явля- ется продолжением не более одной другой
7	19	$n\leqslant 100000$	$m\leqslant 100000$	_	0-2,5	
8	6	$n\leqslant 250000$	$m \leqslant 250000$	_	0-2,5,7	
9	6	$n \leqslant 400000$	$m \leqslant 400000$	_	0-2,5,7,8	Offline-проверка
10	6	_	_	_	0 - 10	Offline-проверка

Задача D. Зима в городе К

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Город K расположен на севере очень большой страны. И вот наконец-то в этот город пришла зима, которая продлится m дней. В городе K живут самые обычные люди большой страны, поэтому они очень не любят, когда их дом покрыт снегом.

Всего в этом городе n домов, каждый из которых изначально не покрыт снегом. Вы знаете, что утром i-го зимнего дня произойдет одно из следующих событий:

- Выпадет снег, и дома с номерами от l_i до r_i включительно покроются снегом.
- Коммунальные службы очистят от снега дома с номерами от l_i до r_i включительно.

Начиная с этого момента, Вы — мэр города К. Первое ваше задание на посту мэра — спрогнозировать уровень счастья каждого жителя. Для этого вам нужно узнать, сколько дней во время зимы каждый дом не будет покрыт снегом.

Формат входных данных

Первая строка содержит два числа n и m $(1 \le n, m \le 200\,000)$ — количество домов в городе K, а также длительность зимы.

В следующих m строках описываются события, которые происходили в каждый из дней зимы. В i-й строке содержится символ c_i и два целых числа l_i и r_i ($c_i = +$ или $c_i = -$, $1 \le l_i \le r_i \le n$). Если $c_i = +$, то в i-й день выпал снег на отрезке домов с l_i -го по r_i -й. Если $c_i = -$, то в i-й день был убран весь снег с домов с l_i -го по r_i -й.

Формат выходных данных

Для каждого дома выведите количество дней, которые он не будет покрыт снегом.

Примеры

стандартный ввод	стандартный вывод		
4 3	2 1 0 2		
+ 1 3			
- 1 2			
+ 2 4			
8 5	0 2 2 4 3 3 4 4		
+ 1 3			
+ 5 8			
- 2 8			
- 3 7			
+ 1 6			

Замечание

Рассмотрим первый пример.

В первый день зимы под снегом не будет дома 4.

Во второй день зимы под снегом не будут домов 1, 2, 4.

В третий день зимы под снегом не будет дома 1.

Поэтому ответ $2\ 1\ 0\ 2$.

Система оценки

Тесты к этой задаче состоят из 5 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп.

Длинный тур отборочного этапа Открытой олимпиады школьников 2022—2023 учебного года Россия. 21 ноября 2022 — 15 января 2023

Группа Баллы		Доп. ограничения		Необх. группы	V over commonwer
Труппа	Баллы	n	m	пеоох. группы	Комментарий
0	0	_	_	_	Тесты из условия.
1	14	$n \leqslant 1000$	$m \leqslant 1000$	0	
2	19	_	_	_	$l_i = r_i$
3	22	_	_	_	$l_i = 1$
4	18	_	_	_	Если $c_i = +, c_j = -,$ то $i < j$.
5	27	_	_	0-4	

Задача Е. Грибные пары

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Недавно столичный Центр Помощи Мигрантам открыл свою школу. Школа эта очень странная — занятия идут не по 45 минут, ученики пропускают уроки, а ведет их учитель по прозвищу ГРИБ. В один момент это надоело всем (кроме учеников, конечно же), из-за чего учитель решил проучить всех прогульщиков.

ГРИБ дал ученикам следующую задачу: Дан массив a, состоящий из n целых чисел. К этому массиву приходят m запросов, состоящих из двух чисел x_i и y_i . Для каждого запроса требуется максимизировать произведение числа вхождений x_i до некоторой позиции на количество вхождений y_i начиная с этой позиции. Более формально, можно ввести следующие три функции:

- lcnt(j,x) количество вхождений числа x на префиксе массива a до позиции j включительно.
- rcnt(j,x) количество вхождений числа x на суффиксе массива a начиная с позиции j включительно.
- $f(i, x, y) = lcnt(i 1, x) \cdot rcnt(i, y)$

Для каждого запроса необходимо по всем j от 2 до n найти максимум $f(j,x_i,y_i)$. Так как ученики пропустили все занятия, они не могут решить задачу ГРИБ'а. Помогите ученикам школы Центра Помощи Мигрантам решить эту задачу и избежать отчисления из школы.

Формат входных данных

В первой строке даны два целых числа n и m ($2 \le n \le 100\,000, 1 \le m \le 100\,000$) — количество чисел в массиве и число запросов.

Во второй строке даны n целых чисел a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — числа в массиве.

В следующих m строках описаны запросы. В каждой из них даны два целых числа x_i и y_i ($1 \le x_i, y_i \le 10^9$) — значения из i-го запроса. Гарантируется, что числа x_i и y_i присутствуют в массиве.

Формат выходных данных

В m строках выведите ответы на запросы, по одному в строке.

Примеры

стандартный ввод	стандартный вывод
5 3	2
1 2 3 2 1	1
1 2	2
2 2	
1 2	
5 4	2
1 1 1 2 2	6
1 1	1
1 2	0
2 2	
2 1	

Замечание

Рассмотрим первый пример.

Первый запрос -1 2:

- f(2,1,2)=2
- f(3,1,2)=1
- f(4,1,2)=1
- f(5,1,2)=0

Таким образом, ответ на первый запрос равен 2. Второй запрос -2 2:

- f(2,2,2) = 0
- f(3,2,2) = 1
- f(4,2,2) = 1
- f(5,2,2) = 0

Таким образом, ответ на второй запрос равен 1.

Третий запрос совпадает с первым, и ответ на него равен 2.

Система оценки

Тесты к этой задаче состоят из 5 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Оffline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Группа Баллы		Доп. ограничения			Необх. группы	Комментарий
Труппа	Группа Баллы		m	a_i	пеоох. группы	Комментарии
0	0	_	_	_	_	Тесты из условия.
1	14	$n \leqslant 100$	$m \leqslant 100$	_	0	
2	19	$n \leqslant 5000$	$m \leqslant 5000$	_	0, 1	
3	22	_	_	$a_i \leqslant 1000$	_	
4	12	_	_	_	_	$x_i = y_i$ во всех запросах
5	33	_	_	_	0-4	Offline-проверка

Задача F. Австралийская ПСП

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Как известно, в Австралии смотрят на вещи под самыми разными углами, поэтому и правильные скобочные последовательности они задают нестандартным способом:

- Пустая скобочная последовательность считается правильной.
- Если S считается правильной, то)S(, (S), [S],]S[, {S}, }S{, <S> и >S< тоже считаются правильными.
- Если S и T считаются правильными, то S+T тоже считается правильной (здесь + означает конкатенацию строк).

Мальчик Вася решил посетить Австралию. Но вот беда, для этого надо пройти австралийский тест на интеллект! В самом сложном задании теста даётся строка s, состоящая из скобок и к ней даются m заданий двух видов:

- 1. Заменить скобку на позиции a_i .
- 2. Сказать, считается ли подстрока s на позициях с l_i по позицию r_i включительно правильной скобочной последовательностью в Австралии.

Вася очень просит вас помочь ему пройти тест.

Формат входных данных

Первая строка содержит единственное целое число $n~(1\leqslant n\leqslant 200\,000)$ — длину скобочной последовательности.

Во второй строке содержится строка s длины n, состоящая из скобок () [] {} <> — исходная строка, данная Васе.

В третьей строке содержится целое число $m \ (1 \leqslant m \leqslant 200\,000)$ — количество заданий теста.

В следующих m строках заданы запросы. В i-й из следующих строк в начале содержится целое число t_i $(1 \le t_i \le 2)$.

- Если $t_i = 1$, то далее строка содержит целое число a_i и символ c_i ($1 \le a_i \le n$). В этом случае требуется в строке s на позиции a_i заменить скобку на c_i . Гарантируется, что c_i является одной из скобок () [] {}<>.
- Если $t_i = 2$, то далее строка содержит два целых числа l_i и r_i ($1 \leqslant l_i \leqslant r_i \leqslant n$). В этом случае требуется узнать, считается ли подстрока s на позициях с l_i по позицию r_i правильной скобочной последовательностью в Австралии.

Формат выходных данных

Для каждого запроса второго типа выведите «Yes» (без кавычек), если скобочная последовательность считается правильной и «No» (без кавычек) иначе.

Примеры

стандартный ввод	стандартный вывод
6	Yes
)()(()	Yes
7	Yes
2 1 6	No
1 4)	
2 2 5	
1 3 [
1 4]	
2 1 6	
2 4 5	
10	Yes
>())(][<}{	No
6	No
2 1 10	Yes
1 3 (
2 1 10	
2 2 5	
1 2)	
2 1 10	

Замечание

В первом примере:

- 1. В первом задании просят сказать, считается ли подстрока «)()(()» правильной. Ответ «Yes», так как «)(» и «()» считаются правильными, а эта подстрока представляется, как сумма таких строк.
- 2. Во втором задании просят заменить скобку на 4-й позиции на). После этого строка будет равна «)())()».
- 3. В третьем задании просят сказать, считается ли подстрока «())(» правильной. Ответ «Yes» аналогично первому заданию.
- 4. В четвёртом задании просят заменить скобку на 3-й позиции на [. После этого строка будет равна «) ([) ()».
- 5. В пятом задании просят заменить скобку на 4-й позиции на]. После этого строка будет равна «)([]()».
- 6. В шестом задании просят сказать, считается ли подстрока «)([]()» правильной. Ответ «Yes» аналогично предыдущим заданиям, так как «[]» тоже считается правильной.
- 7. В седьмом задании просят сказать, считается ли подстрока «] (» правильной. Но нетрудно убедиться, что правильной она не считается, поэтому ответ «No».

Во втором примере:

- 1. В первом задании просят сказать, считается ли подстрока «>())(][<}{» правильной. Ответ «Yes», так как «()» и «)(» считаются правильными, поэтому их сумма «())(» считается правильной, поэтому строка «>())(<» считается правильной. Также «}{» считается правильной, поэтому исходная подстрока считается правильной.
- 2. Во втором задании просят заменить скобку на 3-й позиции на (. После этого строка будет равна «>(()()[[<}{*).

- 3. В третьем задании просят сказать, считается ли подстрока «>(()()[<}{» правильной. Ответ «No», так как иначе строка «(()(» считалась бы правильной, но нетрудно убедиться, что это не так.
- 4. В четвёртом задании просят сказать, считается ли подстрока «(()(» правильной. Нетрудно убедиться, что правильной она не считается, поэтому ответ «No»
- 5. В пятом задании просят заменить скобку на 2-й позиции на). После этого строка будет равна «>) () (] [<}{».
- 6. В шестом задании просят сказать, считается ли подстрока «>)()(][<}{» правильной. Ответ «Yes», так как «)()(» правильная, поэтому и «>)()(<» правильная, поэтому и исходная подстрока правильная.

Система оценки

Тесты к этой задаче состоят из 6 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Offline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Группа Баллы		Доп. ограничения			Необх. группы	Комментарий
Труппа	Баллы	n	m	t_i	пеоох. группы	Комментарии
0	0	_	_	_	_	Тесты из условия.
1	16	$n \leqslant 100$	$m \leqslant 100$	_	0	
2	15	$n \leqslant 10000$	$m \leqslant 10000$	_	0, 1	
3	12	$n \leqslant 10000$	_	$t_i = 2$	_	
4	13	_	_	_	_	В любой момент строка состоит только из скобок
						(и)
5	20	_	_	$t_i = 2$	3	
6	24	_	_	_	0 - 5	Offline-проверка.

Задача G. Очередная скобочная последовательность

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Вам дан массив a, состоящий из n целых чисел a_1, a_2, \ldots, a_n . Назовём cmoumocmью правильной скобочной последовательности s длины n сумму чисел в массиве a, которые стоят на позициях, где в s стоят открывающие скобки «(».

Ваша задача состоит в том, чтобы найти правильную скобочную последовательность длины n, стоимость которой максимальна.

В этой задаче правильная скобочная последовательность — это последовательность, которую можно построить по следующим правилам:

- Пустая последовательность является правильной скобочной последовательностью;
- Если A правильная скобочная последовательность, то последовательность (A) является правильной скобочной последовательностью;
- Если A и B правильные скобочные последовательности, то последовательность AB (соединение этих последовательностей) является правильной скобочной последовательностью.

Например, последовательности (())(), () и (()(())) являются правильными, а) (, (() и (())) (не являются.

Формат входных данных

Каждый тест состоит из нескольких наборов входных данных. Первая строка содержит единственное целое число t ($1 \le t \le 10^5$) — количество наборов входных данных. Далее следует описание наборов входных данных.

Первая строка каждого набора входных данных содержит единственное четное целое число n $(2 \le n \le 2 \cdot 10^5)$ — длину массива a.

Вторая строка каждого набора входных данных содержит n целых чисел a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — элементы массива a.

Гарантируется, что сумма n по всем наборам входных данных не превосходит 200 000.

Формат выходных данных

Для каждого набора входных данных выведите единственную строку s — правильную скобочную последовательность длины n с максимальной возможной стоимостью. Если правильных ответов несколько, выведите любой из них.

Пример

стандартный ввод	стандартный вывод		
5	()		
2	(())		
1 10	()()		
4	(())()(())		
4711	(())()		
4			
1 1 5 3			
10			
1 2 1 1 1 2 2 2 1 1			
6			
3 3 1 3 4 4			

Замечание

В первом наборе входных данных существует единственная правильная скобочная последовательность длины 2-«()». Её стоимость равна 1, потому что $a_1=1$.

Во втором наборе входных данных есть две правильные скобочные последовательности длины 4- «(())» и «()()». У первой стоимость равна $a_1+a_2=4+7=11$, у второй стоимость равна $a_1+a_3=4+1=5$, поэтому ответ равен «(())».

В четвёртом наборе входных данных ответом является «(())()(())», стоимость которой равна $a_1 + a_2 + a_5 + a_6 + a_7 = 1 + 2 + 1 + 2 + 2 = 8$.

Система оценки

Тесты к этой задаче состоят из 4 групп, не считая тесты из условия. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов необходимых групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп.

Обозначим за N сумму n по всем тестовым набором внутри одного теста.

Группа Балл	Голиг	Доп. ограничения		Hacky province	V o v v rovemo rove
	Баллы	N	a_i	Необх. группы	Комментарий
0	0	_	_	-	Тесты из условия.
1	23	$N \leqslant 16$	_	0	
2	17	$N \leqslant 1000$	_	0, 1	
3	24	_	$a_i \leqslant 2$	_	
4	36	_	_	0, 1, 2, 3	

Задача Н. Выращивание кроликов

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Разочаровавшись в олимпиадной информатике после школьного этапа, маленький мальчик Захар решил заняться разведением кроликов. Для этого он купил себе n кроликов и пронумеровал их по неубыванию весов. Изначально i-й кролик весит w_i килограмм.

Захар заметил, что если кроликов выстроить в шеренгу в порядке неубывания весов, то каждый день у каждого кролика, такого что его вес меньше веса следующего, вес увеличивается на 1 килограмм. Более формально, каждый день вес i-го кролика увеличивается на 1 кг, если он не последний в шеренге, и $w_i \neq w_{i+1}$. Все такие изменения происходят одновременно для всех кроликов. Такое происходит до тех пор, пока веса всех кроликов не становятся равными весу последнего кролика в шеренге.

Захар очень любознательный мальчик, а поэтому ему хочется ответить на m запросов: через сколько дней вес кроликов больше не будет меняться, если в качестве шеренги взять кроликов с номерами от l_i до r_i . Так как Захар разочарован в олимпиадной информатике, помочь ему предстоит вам.

Формат входных данных

В первой строке задано единственное целое число $n\ (1\leqslant n\leqslant 200\,000)$ — количество кроликов у Захара.

В следующей строке заданы n целых чисел w_1, w_2, \ldots, w_n ($1 \le w_i \le 10^9$) — веса кроликов. Гарантируется, что эти числа отсортированы по неубыванию, то есть $w_i \le w_{i+1}$, для всех $i \le n-1$.

В следующей строке задано единственное целое число $m~(1\leqslant m\leqslant 200\,000)$ — количество запросов.

В следующих m строках задано по два целых числа l_i и r_i $(1 \le l_i \le r_i \le n)$ — границы шеренги из i-го запроса.

Формат выходных данных

На каждый запрос в отдельной строке выведите количество дней, после которых веса кроликов не будет меняться. Можно показать, что такой день обязательно наступит.

Пример

стандартный ввод	стандартный вывод		
4	6		
1 3 3 7	2		
4	5		
1 4	0		
1 3			
2 4			
2 3			

Замечание

В первом запросе после первого дня веса были равны 1,3,3,7, после второго [2,3,4,7], третьего [3,4,5,7], [4,5,6,7], [5,6,7,7], [6,7,7,7] и после седьмого [7,7,7,7]

Система оценки

Тесты к этой задаче состоят из 6 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Оffline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Длинный тур отборочного этапа Открытой олимпиады школьников 2022—2023 учебного года Россия. 21 ноября 2022 — 15 января 2023

Группа	Баллы	До	п. ограничени:	Я	Необх. группы	Комментарий
Группа Баллы	n	m	w	пеоох. группы	Комментарии	
0	0	_	_	_	_	Тесты из условия.
1	14	$n \leqslant 100$	$m \leqslant 100$	$w \leqslant 100$	0	
2	17	$n \leqslant 500$	$m \leqslant 500$	$w \leqslant 500$	0, 1	
3	23	$n \leqslant 10000$	$m \leqslant 10000$	_	0, 1, 2	
4	12	$n \leqslant 100000$	$m\leqslant 100000$	$w \leqslant 2$	_	
5	13	$n \leqslant 100000$	$m\leqslant 100000$	$w \leqslant 1000$	0, 1, 2, 4	
6	21	_	_	_	0 - 5	Offline-проверка

Задача І. Гладкие числа

Имя входного файла: стандартный ввод или input.txt Имя выходного файла: стандартный вывод или output.txt

Ограничение по времени: 4 секунды Ограничение по памяти: 1024 мегабайта

Число называется b-гладким, если все его простые делители не превышают b. Число x называется простым делителем числа y, если y делится нацело на x, x > 1 и единственные два делителя числа x это 1 и x.

Даны n и b. Найдите количество b-гладких чисел от 1 до n.

Формат входных данных

В единственной строке вводятся два целых числа n и b ($4 \le n \le 10^{18}$, $2 \le b \le 500$).

Формат выходных данных

В единственной строке выведите количество b-гладких чисел от 1 до n.

Примеры

стандартный ввод	стандартный вывод		
7 2	3		
12 3	8		
10000 50	2463		

Замечание

Во втором примере 3-гладкими числами от 1 до 12 являются: 1, 2, 3, 4, 6, 8, 9, 12

Система оценки

Тесты к этой задаче состоят из 18 групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов некоторых из предыдущих групп. Обратите внимание, прохождение тестов из условия не требуется для некоторых групп. Offline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Группа	Баллы	Доп. ограничения		Необх. группы	Комментарий
i pyima Da	Баллы	n	b	пеоох. группы	Комментарии
0	0	_	_	_	Тесты из условия.
1	7	$n\leqslant 10000$	$b \leqslant 100$	0	
2	8	$n \leqslant 10^7$	$b \leqslant 100$	0, 1	
3	8	$n \le 10^{11}$	$b \leqslant 100$	0-2	
4	4	$n \le 10^{11}$	$b \leqslant 300$	0 - 3	
5	6	$n \le 10^{11}$	_	0 - 4	
6	12	$n \le 10^{16}$	$b \leqslant 100$	0 - 3	
7	7	$n \leqslant 10^{12}$	_	0 - 5	
8	5	$n \leqslant 10^{13}$	_	0-5,7	
9	5	$n \leqslant 10^{14}$	_	0-5, 7, 8	
10	9	_	$b \leqslant 100$	0-3,6	
11	4	_	$b \leqslant 150$	0-3,6,10	
12	3	_	$b \leqslant 200$	0-3,6,10,11	
13	3	_	$b \leqslant 250$	0-3,6,10-12	
14	3	_	$b \leqslant 300$	0-4,6,10-13	
15	4	$n \leqslant 10^{15}$	_	0-5,7-9	
16	4	$n \leqslant 10^{16}$	_	0-9,15,16	
17	4	$n \le 10^{17}$	_	0-9,15-17	Offline-проверка
18	4		_	0 - 17	Offline-проверка