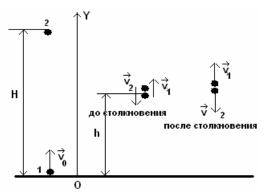
11 класс

(3 варианта)

- 1. Два одинаковых тела начинают одновременно встречное движение вдоль вертикальной
- осиY без начальной скорости. На некотором расстоянии они сталкиваются. Начальная координата тела, движущегося вниз равна 20, а тела движущегося вверх 0. Найти начальную скорость первого тела и координату точки столкновения, если время падения второго тела оказалось в 2 раза больше времени его падения, если бы столкновения не было. Считать столкновение центральным и абсолютно упругим. Ускорение свободного падения $g = 10 \text{м/c}^2$. Запишем зависимость координаты тел от времени для каждого тела:



$$Y_{_1}=\upsilon_{_0}t-\frac{gt^{\,2}}{2} \text{ и Y}_{_2}\text{= }H-\frac{gt^{\,2}}{2}\text{. В момент встречи координаты тел равны, т.е. }H-\frac{gt^{\,2}}{2}\text{= }\upsilon_{_0}t-\frac{gt^{\,2}}{2}\text{.}$$

Откуда время столкновения будет определяться $\,t_{
m c_T} = \frac{H}{\upsilon_{
m o}}\,.$ Тогда высота, на которой произойдет

столкновение, будет определяться $\,h = H(1-\frac{gH}{2\upsilon_2^2})\,.\,$ Время падения второго тела без столкновения

можно определить из уравнения:
$$H=\frac{gt_{21}^{\,2}}{2}$$
 . Значит $t_{21}=\sqrt{\frac{2H}{g}}$, t_{21} =2 с.

При абсолютно упругом столкновении тел, выполняются законы сохранения импульса и энергии. При ударе тела обменяются скоростями, и дальше будут продолжать движение по траектории другого тела, по которой то двигалось бы в отсутствии соударения. Таким образом, время падения второго тела в результате столкновения будет равно полному времени движения первого тела (от начала движения до возвращения на Землю) в отсутствии столкновения со вторым телом. Таким образом $t_{22}=t_1=2\frac{\upsilon_0}{g}$. По условию задачи t_{22} =2 t_{21} . Значит $2\frac{\upsilon_0}{g}$ =4 или υ_0 =20 м/с.

Высота, на которой произошло столкновение, будет равна:
$$h = 20(1 - \frac{10 \cdot 20}{2 \cdot 400}) = 15 \, \text{ (м)}.$$

Ответ: **20 м/с**— начальная скорость первого тела; **15 м** — высота, на которой произошло столкновение.

2. Частица с отрицательным удельным зарядом $q/m=2\cdot10^9$ Кл/кг, ускоренная разностью потенциалов $\Delta \phi=1$ кВ, в начальный момент $t_0=0$ находится в точке 0 (см. рисунок) и движется со скоростью v=200 м/с, направленной вдоль оси z в однородном магнитном поле, индукция \vec{B} которого направлена вдоль оси x. В момент времени t=5мкс её скорость в первый раз будет направлена против оси y. На каком удалении от точки 0 частица окажется в этот момент времени, и какой путь она пройдет за время t?

Решение

Работа, совершаемая ускоряющим напряжением $U=\Delta \phi$, идет на изменение кинетической энергии частицы: $A=q\Delta \phi=m{\rm v}^2\big/2$. Поэтому, проходя ускоряющую разность потенциалов $\Delta \phi$, частица приобретает скорость $\boxed{{\rm v}=\sqrt{2q\Delta \phi/m}}$.

 $AO = \sqrt{2}R = 4,50 \text{ M}.$

На рисунке указано направление силы $\vec{F}_{\text{магн}}$ и круговая траектория частицы видим, что скорость будет направлена против оси y в точке A, когда частица пройдет четверть окружности за время $t=\frac{T}{4}=\frac{\pi m}{qB}$. Отсюда $B=\frac{\pi m}{qt}$. Подставляя найденное

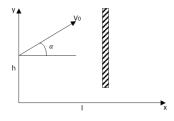
выражение для v, находим радиус траектории: $R=rac{m{
m v}}{qB}=rac{t}{\pi}\sqrt{rac{2q\Delta\phi}{m}}==3{,}18~{
m M}$. За время t частица проделает путь $2\pi R/4=5~{
m M}$ и удалится от точки 0 на расстояние

Ответ: 5 м – путь частицы; 4,5 м – расстояние, на которое удалилась частица от точки 0

3. Мальчики устроили игру в которой надо бросать маленький упругий шарик в стену рассчитав бросок так, чтобы мячик, отлетев от стены, упал точно на линию отмеченную у ног бросавшего. За линию заходить нельзя, как и не доходить до нее. Меняя углы бросания, мальчики определили, что, бросая под углом 60° , мячик приземляется точно на отмеченную линию. Найти начальную скорость мяча, если известно что высота, с которой бросают мяч 95см, а расстояние до стены 3 м. Ускорение свободного падения принять равным 10 м/c^2 .

Решение

Мяч пролетает расстояние $2l = V_0 \cos \alpha t_0$, откуда можно выразить время



$$t_0 = \frac{2l}{V_0 \cos \alpha}$$

Кинематическое уравнение в проекции на ось У

$$y = h + V_0 \sin \alpha t_0 - \frac{gt^2}{2} = 0$$

$$h+rac{V_0\sinlpha\cdot 2l}{V_0\coslpha}-rac{g4l^2}{2V_0^2\cos^2lpha}=0$$
 , после преобразований получим

$$V_0^2 \cos^2 \alpha = \frac{2gl^2}{h + 2ltg\alpha}$$

Выразим начальную скорость мяча

$$V_0 = \frac{l}{\cos \alpha} \sqrt{\frac{2g}{h + 2ltg\alpha}} = \frac{3}{0.5} \sqrt{\frac{2 \cdot 10}{0.95 + 2 \cdot 3 \cdot 1.73}} \approx 7.962 \approx 8 \text{M/c}$$

4. Плоская монохроматическая волна падает нормально на дифракционную решетку с постоянной d = 90 мкм. За решеткой, параллельно ее плоскости, установлена тонкая собирающая линза с фокусным расстоянием F = 120, а в ее фокальной плоскости — экран. Координата второго главного интерференционного максимума на экране равна x = 12 мм (начало отсчета 0 оси X совпадает с фокусом линзы). Найти длину волны падающего света. Ответ дать в нм.

Решение

Линза соберет в одной точке фокальной плоскости (экрана) все параллельные лучи, уходящие от каждой щели под углом ф к направлению падения волны. Угол ф соответствует главный интерференционный максимум 2-го порядка. Угол найдем из условия

$$d \cdot \sin \varphi = 2\lambda$$

Т.к. луч, проходящий через центр линзы не преломляется, то из прямоугольного треугольника, образованного осью линзы, лучом, направленным под углом φ и координатой интерференционного максимума 2-го порядках $_2$ = 12 мм, найдем значение тангенса угла φ

$$x_2=f\cdot tg arphi\Rightarrow tg arphi=rac{x_2}{f}=0.01$$
 . Для такого малого угла $\mathrm{tg}arphi\!pprox\!\sinarphi\!pprox\!arphi$

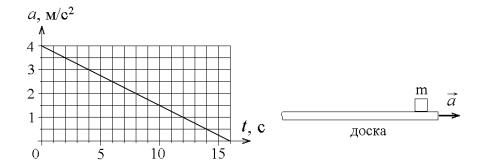
Найдем искомую длину волны.

$$\lambda = \frac{d}{2} \cdot \frac{x_2}{f} = 450 \mu$$

Ответ: **450 нм**

- 5. На столе лежит длинная линейка и на неё поставили небольшую шайбу. После действия на линейку горизонтальной силы (толкнули вперед) линейка приобрела ускорение и шайба начала двигаться вдоль линейки. Модуль ускорения линейки менялся по линейному закону, причем в начальный момент времени он был максимальным 4 M/c^2 , через 4 c стал равен 3 M/c^2 , через $8 \text{ секунд} 2 \text{ M/c}^2$ и позже стал равен 0 M/c^2 . Масса шайбы 20 г, коэффициент трения между шайбой и линейкой 0.3. Ускорение свободного падения принять равным 10 M/c^2 .
- Определить момент времени, когда ускорение линейки стало равно нулю и найти скорость шайбы относительно пола в этот момент.
- Найти скорость шайбы относительно пола в момент времени, когда она перестанет перемещаться вдоль линейки.

Построим график зависимости ускорения от времени, откуда найдем, что при t = 16 с ускорение линейки будет равно 0.



Максимальное ускорение шайбе может дать только максимальная сила трения, равная силе трения скольжения

$$F_{mn,c\kappa} = \mu N = \mu mg$$

$$\mu mg = ma$$
 $\Rightarrow a = \mu g = 3 \text{ m/c}^2$.

Так как линейка имеет большее ускорение в начальный момент времени, то вплоть до момента $t=4\,\mathrm{c}$ шайба будет двигаться с постоянным ускорением 3 м/с², при этом скользя по линейке, а затем перестанет проскальзывать. Дальнейшее движение будет с переменным ускорением, совпадающим с ускорением линейки.

Разобьем задачу на два интервала. От 0 до 4 секунд и от 4 с до 16 с.

На первом интервале скорость шайбы находится из уравнения равноускоренного движения

$$V_1 = V_{0.1} + at = 0 + 3 \cdot 4 = 12$$
 m/c

На втором интервале скорость увеличивается на ΔV , и это изменение скорости можно найти как площадь треугольника под графиком ускорения от времени в интервале от 4 с до 16 с:

$$\Delta V = \frac{1}{2} \cdot 3 \cdot 12$$
 =18 м/с. Таким образом конечная скорость шайбы будет равна 12+18=30 м/с

Ответ: 1) 30 м/с, 16 с; 2) 12 м/с.

6. Движок реостата "Pe" перемещают слева направо, увеличивая сопротивление R. При нулевом сопротивлении, $R=R_1=0$ Ом, циклическая частота собственных электрических колебаний в контуре была равна ω_1 . При сопротивлении $R=R_2=15$ кОм частота колебаний уменьшилась в два раза. При какой величине сопротивления реостата R_3 колебания прекратятся?

Решение

При R = 0 циклическая частота незатухающих колебаний равна

$$\omega_1=\omega_0=1/\sqrt{LC}$$
 . При ненулевой величине сопротивления $R=R_2$ частота $\omega_2=\sqrt{\omega_0^2-\beta_2^2}=$

 $\sqrt{\omega_1^2-\beta_2^2}=\omega_1/2$. Возводя в квадрат обе части последнего равенства, находим $\omega_1^2-\beta_2^2=\frac{\omega_1^2}{4}$, откуда получаем

$$eta_2 = rac{R_2}{2L} = rac{\sqrt{3}\omega_1}{2} = rac{1}{2}\sqrt{rac{3}{LC}}$$
 и $\sqrt{rac{L}{C}} = rac{R_2}{\sqrt{3}}$. Колебания прекращаются, когда $\omega = eta$ и сопротивление

достигает критической величины $R_3 = R_{
m Kp} = 2\sqrt{\frac{L}{C}}$. Поэтому $R_3 = \frac{2R_2}{\sqrt{3}} = 17,3$ кОм .

7. При испытаниях снаряда после подрыва на высоте 1800 м при вертикальном выстреле от него отлетели два осколка. Осколки разлетелись вдоль направления выстрела, в противоположных направлениях Осколок массой 2 кг продолжил движение вверх, а осколок массой 3 кг — вниз. С какой скоростью летел меньший осколок через 1,5 секунды после подрыва, если их полная механическая энергия сразу после разрыва 300 кДж? Ускорение свободного падения принять равным 10 м/с². Ответ округлить до целых.

Решение

Полная энергия снаряда равна сумме полных энергий осколков. Запишем закон сохранения поной механической энергии системы

$$E = (m_1 + m_2)gH + \frac{m_1V_{01}^2}{2} + \frac{m_1V_0^2}{2}E - (m_1 + m_2)gH = \frac{m_2V_{02}^2}{2}(1 + \frac{m_2}{m_1})$$

Из закона сохранения импульса

$$m_1V_{01} - m_2V_{02} = 0$$

$$V_{01} = \frac{m_2 V_{02}}{m_1}$$

Скорость меньшего осколка, летящего вверх

$$V_2 = V_{02} - gt$$

$$V_2 = \sqrt{\frac{2(E - (m_1 + m_2)gH}{m_2(1 + \frac{m_2}{m_1})}} - gt = \sqrt{\frac{2(300000 - (3 + 2)10 \cdot 1800}{2(1 + \frac{2}{3})}} - 10 \cdot 1.5 = \sqrt{126000} - 15 \approx 340 \text{M/c}^2$$

Ответ: 340 м/с

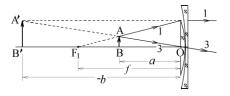
8. Тонкие линзы — плоско-выпуклая с радиусом $R_1=20\,\mathrm{cm}$ и плоско-вогнутая с радиусом $R_2=30\,\mathrm{cm}$ — сделаны из стекла с показателем преломления n=1,6 и плотно прижаты друг к другу. Предмет П находится на расстоянии $a=60\,\mathrm{cm}$ от линз. На каком расстоянии от предмета находится его изображение в этой оптической

системе?

Левая линза собирающая, а правая — рассеивающая. Их оптические силы $D_1 = \left(n-1\right)\!\!\left(\frac{1}{\infty} + \frac{1}{R_1}\right) \ \text{и} \ D_2 = \left(n-1\right)\!\!\left(\frac{1}{-R_2} + \frac{1}{\infty}\right) \ \text{складываются, и систему можно рассматривать как}$

одну тонкую линзу с фокусным расстоянием $f=rac{n_{
m воздуха}}{D_1+D_2}=rac{R_1R_2}{ig(n-1ig)ig(R_2-R_1ig)}=1$ м .

Используя формулу тонкой линзы, получаем рас $b=af/(a-f)=-1,5\,\mathrm{M}$. Это расстояние отрицательно, т.к. предмет находится ближе к линзе, чем её левый фокус F_1 . Адиния луча "1" должна проходить через фокус F_1 , поэтому выходящие из линзы лучи "1" и "3" расходятся (рис.1.25). Их продолжения пересекаются в точке A' мнимого изображения. Искомое расстояние между предметом и изображением $|b|-a=0,9\,\mathrm{M}$.



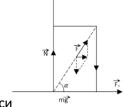
изображения

расстояние до

9. Старшеклассники показывали фокусы детям. Один из фокусов заключался в том, что при выдергивании листа бумаги из-под стоящего на нем цилиндра, цилиндр не падал и не сдвигался с места. Во время репетиций этого номера юные фокусники заметили, что устойчивость цилиндра зависит от скорости выдергивания листа. Каким должно быть минимальное ускорение листа для успешного результата фокуса? Размеры цилиндра: высота 30 см, диаметр основания — 8,5 см. Ускорение свободного падения принять 10 м/с². Ответ округлить до сотых.

Решение

Действующие силы во время выдергивания листа бумаги должны уравновесить друг друга чтобы цилиндр не опрокинулся $\vec{F} = \vec{F}_{mp} + \vec{N}$



В проекциях на оси

$$F\cos\alpha = ma_{\min}$$

$$F \sin \alpha = mg$$

Найдем угол между линией действия силы F и силой трения

 $tg\alpha = h/2r = g/a_{min.}$ выразим искомое минимальное ускорение

$$a_{\min} = \frac{gd}{h} = 2.83 \text{ m/c}^2$$

Ответ:2,83 м/c²

10. В радиокружке школьники собирали контур для радиоприемника настроенный на длинноволновый диапазон. В наборе деталей был конденсатор с максимальным напряжением 0,4 В и емкостью 0,1 мкФ. Каково максимальное значение тока в контуре, если пренебречь сопротивлением в нем и принять длину волны равную 1560 м? Электромагнитные волны распространяются со скоростью света (3·10 8 м/с). Ответ округлить до сотых.

Решение

В контуре максимальный ток соответствует максимальному напряжению.

Энергия контура определяется по формуле

$$\frac{CU_{\text{max}}^2}{2} = \frac{LI_{\text{max}}^2}{2}$$
 (1)

Из формулы для определения длины волны принимающего контура найдем индуктивность

$$\lambda = c \cdot T = 2\pi c \sqrt{LC}$$

$$\sqrt{L} = \frac{\lambda}{2\pi c\sqrt{C}}$$
 (2)

Из формулы (1), учитывая индуктивность, найдем искомый максимальный ток

$$I_{\text{max}} = U_{\text{max}} \frac{2\pi cC}{\lambda} = \frac{2 \cdot 3.14 \cdot 3 \cdot 10^8 \cdot 0.4 \cdot 10^{-7}}{1560} = 48 \cdot 10^{-3} \approx 0.05A$$

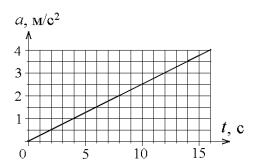
Ответ: 0,05 А (48 мА)

11. На столе на подвижной платформе свободно лежит кубик массы m = 100 г. В некоторый момент $t_0=0$ платформе придали горизонтальное ускорение, модуль которого изменялся по линейному закону. Зависимость значений модуля ускорения приведены в таблице. Коэффициент трения между кубиком и платформой $\mu=0,2$.

t,	, c	0	2	4	6	8	10	12	14	16
a	$n, M/c^2$	0	0,5	1	1,5	2	2,5	3	3,5	4

- 1) Найти скорость кубика относительно стола в тот момент, когда он начнет движение по платформе.
- 2) Найти скорость кубика относительно горизонтальной поверхности через 15 секунд после начала движения.

Решение



На шайбу действует сила трения покоя и она направлено туда же куда и ускорение. Напишем систему динамических уравнений

$$F_{mp} = ma$$
 $N = mg$ $F_{mp} \le \mu N$

Отсюда следует $ma \le \mu mg$ или $a \le \mu g$. Это условие не проскальзывания. Значит шайба начнет проскальзывать, когда ускорение доски достигнет $a = \mu g = 0, 2 \cdot 10 = 2$ м/c². По графику это произойдет через 8 сек.

Площадь под графиком ускорения от времени есть изменение скорости доски или

$$V = S_{mpeye} = \frac{1}{2} \cdot 8 \cdot 2 = 8 \text{ m/c}.$$

Далее шайба будет двигаться равноускоренно под действием силы трения скольжения с ускорением $a = \mu g = 2$ м/с². Через 7 секунд после начала скольжения скорость шайбы

$$V_{(15)} = V_{(8)} + a \cdot 7 = 8 + 2 \cdot 7 = 22$$
 m/c.

Ответ: 1) 8 m/c, 2) 22 m/c

12. К клеммам источника постоянного тока с внутренним сопротивлением r= 40 Ом сначала подключали нагрузку из двух одинаковых сопротивлений $R_1 = R_2 = R$, соединенных параллельно, а потом соединённых последовательно. В первом случае в цепи за одну минуту на нагрузке выделялось тепло Q_1 = 3,6 кДж, а во втором за то же время на нагрузке выделялось тепло Q_2 = 2,5 кДж. Чему равно каждое из сопротивлений? Какой заряд протекает через нагрузку в обоих случаях?

Решение.

При параллельном соединении резисторов сопротивление нагрузки равно $R_{\rm H1} = R_1 R_2 / (R_1 + R_2) = R/2$, а при последовательном — $R_{\rm H2} = R_1 + R_2 = 2R$. Поэтому

$$Q_{\rm l} = I_{\rm l}^2 R_{\rm Hl} \Delta t = \left(\frac{\varepsilon}{r + R/2}\right)^2 \frac{R}{2} \Delta t$$

$$Q_2 = I_2^2 R_{\rm H2} \Delta t = \left(\frac{\varepsilon}{r + 2R}\right)^2 2R \Delta t$$

Отсюда
$$\frac{Q_1}{Q_2} = \frac{36}{25} = \frac{\left(r+2R\right)^2}{4\left(r+R/2\right)^2}$$
, или $\frac{r+2R}{r+R/2} = \frac{12}{5}$ и $R = \frac{7r}{4} = 70$ Ом.

Зная сопротивления, можно вычислить величину ЭДС, величину токов $I_1 = \sqrt{2Q_1/R\Delta t}$; $I_2 = \sqrt{Q_2/2R\Delta t}$, а также определить протекший за время Δt заряд:

$$q_1 = I_1 \Delta t = \sqrt{\frac{2Q_1 \Delta t}{R}} = 111 \text{ Kл}$$
 $q_2 = I_2 \Delta t = \sqrt{\frac{Q_2 \Delta t}{2R}} = 46,3 \text{ Kл}$

13. Под воздействием ультрафиолетового излучения из металла выбиваются электроны с длиной волны 100 нм которые задерживаются электрическим полем с разностью потенциалов 10 В. При какой длине волны падающих фотонов фотоэффект прекращается. Ответ дать в нанометрах (нм)

Решение

Фотоэффект прекращается при длине волны фотона, соответствующей красной границе, при которой работа выхода $A_{\text{вых}} = hc/\lambda_{\kappa\rho}$. Кинетическая энергия выбитого электрона затрачивается на совершение работы над силами задерживающего электрического поля

$$m_e v^2/2 = e \Delta \varphi$$
.

Подставляя эти соотношения в уравнение фотоэффекта, $E_{\phi} = hc/\lambda = A_{\text{вых}} + m_e v^2/2 =$

$$= hc/\lambda_{\kappa\rho} + e\Delta\phi$$
, найдем

 $\lambda_{\kappa\rho} = \lambda/(1-e\Delta\phi~\lambda/~hc)$, подставляя числовые значения получим $\lambda_{\kappa\rho} = 512~HM$

14. Автоцистерна с водой двигалась вверх по дороге под углом 15° к горизонту. Содержимое цистерны выливалось через отверстие диаметром 1,5 мм со скоростью 10 см/с относительно цистерны, создавая таким образом силу тяги, направленную в противоположную сторону движению автоцистерны. Уровень поверхности воды внутри емкости установился параллельно поверхности склона дороги. Найти коэффициент сопротивления движению. Масса цистерны 2023 кг.

Решение

Поверхность жидкости установится параллельно дороге, если ускорение цистерны будет равно

$$a = gsin\alpha$$

Сила, создаваемая вытекающей жидкостью, равна импульсу жидкости за единицу времени

$$F = \frac{\Delta m\vartheta}{\Delta t} = \frac{\rho S\vartheta \, \Delta t\vartheta}{\Delta t} = \rho S\vartheta^2(1)$$

Эта сила уравновешивает сопротивление движению, следовательно, можно записать

$$F_{conp} = kN = kmg \cdot cos\alpha$$
 (2)

гдек – коэффициент сопротивления движению.

$$kmg \cdot cos\alpha = \rho Sv^2$$
, выразим $k = \rho Sv^2/mg \cdot cos\alpha$

Подставляя числовые значения, получим, что $k \approx 9.10^{-4}$

Ответ: $k \approx 9 \cdot 10^{-4}$

15. Термос заполнен водно-ледяной смесью. В течение 15 минут после начала нагревания температура смеси не менялась, но к концу нагрева повысилась на 23 К. Сколько было смеси, если в единицу времени система получала постоянное количество теплоты. Полное время процесса 19 минут. Удельная теплота плавления льда 330 кДж/кг, а удельная теплоемкость воды 4,2 кДж/кг

Решение

Т.к. в условии задачи не указаны масса льда или воды в смеси, то решение должно быть представлено в общем виде!

Искомая масса смеси $m = m_n + m_\theta$

На таяние льда потребовалось количество теплоты $Q_1 = \lambda m_n$

За 4 минуты нагрева $Q_2 = cm\Delta T$.

Учитывая, что система получала постоянное количество теплоты в единицу времени, можно сделать вывод, что мощность нагревателя постоянна и можно записать

$$Q_1 = P \cdot t_1$$
; $Q_2 = P \cdot t_2$

$$rac{Q_1}{Q_2} = rac{t_1}{t_2} = rac{\lambda m_1}{cm\Delta T}$$
 , выразим искомую массу смеси

$$m = \frac{\lambda m_1 t_2}{c \Delta T t_1}$$

Ответ:
$$m=rac{\lambda m_1\,t_2}{c\Delta T\,t_1}$$