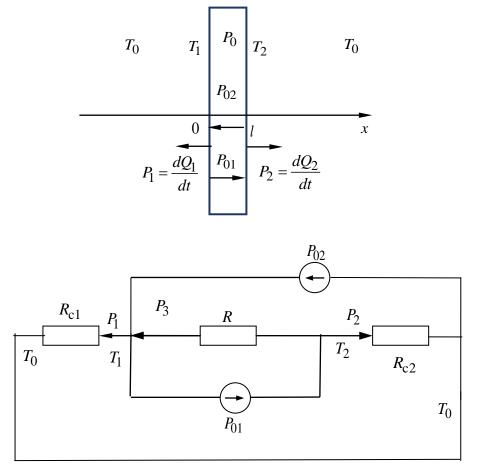
Городская открытая олимпиада школьников по физике 2022/23 года

Заключительный этап Экспериментальный тур

Задача 10.1. Элемент Пельтье

Оборудование: элемент Пельтье, прищепка, мультиметр с термопарой, регулируемый источник напряжения, амперметр, весы, 2 стаканчика (кофейный и бумажный), холодная вода по требованию.


Элемент Пельтье представляет собой термоэлектрический преобразователь, принцип действия которого основан на эффекте Пельтье – возникновении разности температур при протекании электрического тока. Наряду с полезным эффектом перекачки тепла от одной стороны преобразователя к другой, возникает также паразитный эффект нагрева первой (более холодной) стороны преобразователя. При наличии теплоотвода от горячей стороны элемент Пельтье может работать как холодильник.

Подавая на находящийся в воздухе элемент Пельтье напряжение не более 5 В, измерьте установившиеся разности температур сторон элемента. Следите, чтобы температура нагретой стороны не превысила 90°, иначе элемент может выйти из строя.

- 1. Определите полезную мощность P_{01} элемента Пельтье.
- 2. Определите КПД η элемента Пельтье.
- 3. Определите теплоемкость C элемента Пельтье.
- 4. Определите термическое сопротивление R элемента Пельтье. Для справки: термическим сопротивлением называется отношение между разностью температур и проходящей через элемент тепловым потоком (мощностью).

Решение

Обозначим P_{01} полезную мощность, обеспечивающую перекачку тепла от более холодной стороны элемента с температурой T_1 к более горячей с температурой T_2 , P_{02} — паразитную мощность, разогревающую элемент (можно считать, что она подведена к более холодной стороне), P_3 — тепловой поток, протекающий через элемент от более горячей к более холодной стороне, P_1 и P_2 — тепловые потоки от стенок элемента к окружающей среде с температурой T_0 , обусловленные конвекцией.

Эквивалентная схема теплопередачи в элементе Пельтье

Согласно закону Ньютона – Рихмана, теплопотери от стенок могут быть найдены как:

$$P_{1} = \frac{dQ_{1}}{dt} = \alpha S \left(T_{1} - T_{0} \right), \quad P_{2} = \frac{dQ_{2}}{dt} = \alpha S \left(T_{2} - T_{0} \right), \tag{1}$$

$$P_1 = P_3 + P_{02} - P_{01}, (2)$$

$$P_{01} = P_3 + P_2, (3)$$

$$P_3 R = T_2 - T_1. (4)$$

Выразим P_3 из (3) и подставим в (2): $P_1 + P_2 = P_{02}$. Тогда

$$P_{02} = \alpha S(T_1 - T_0) + \alpha S(T_2 - T_0) = \alpha S(T_1 + T_2 - 2T_0)$$

При выключенном нагретом элементе:

$$C\left(\frac{dT_1 + dT_2}{2}\right) = \alpha S\left(T_1 + T_2 - 2T_0\right)dt$$

Узнать теплоемкость C можно, поместив нагретый элемент Пельтье в калориметр с водой.

$$\begin{split} C\frac{T_1+T_2}{2}+c_{\mathcal{B}}m_{\mathcal{B}}T_{\mathcal{B}0} &= \left(C+c_{\mathcal{B}}m_{\mathcal{B}}\right)T_{\mathcal{B}\mathcal{K}}\,.\\ C &= \frac{c_{\mathcal{B}}m_{\mathcal{B}}\left(T_{\mathcal{B}\mathcal{K}}-T_{\mathcal{B}0}\right)}{\left(\frac{T_1+T_2}{2}-T_{\mathcal{B}\mathcal{K}}\right)}\,. \end{split}$$

Тогда

$$\alpha S = \frac{C\left(dT_1 + dT_2\right)}{2\left(T_1 + T_2 - 2T_0\right)dt}.$$

Или можно найти α*S* методом логарифмирования зависимости полусуммы температур от времени и нахождения углового коэффициента.

$$P_{02} = P_1 + P_2 = \alpha S (T_1 + T_2 - 2T_0)$$

$$P_{01} = P_0 - P_{02} = IU - P_{02}$$

$$\eta = \frac{P_{01}}{IU}$$

Выразим P_3 из (3) и подставим в (4):

$$(P_{01}-P_2)R=T_2-T_1,$$

$$(P_{01} - \alpha S (T_2 - T_0)) R = T_2 - T_1,$$

$$R = \frac{T_2 - T_1}{P_{01} - \alpha S (T_2 - T_0)}.$$

Критерии оценивания 10.1

1. Проведены измерения при стационарном нагреве	1
2. Проведены измерения при остывании на воздухе	2
3. Проведены измерения при погружении элемента в воду	1
4. Найдено <i>С</i>	2
 Найдено αS 	2
6. Найдено P_{02}	2
7. Найдено <i>P</i> ₀₁	2
8. Найдено η	1
9. Найдено <i>R</i>	2

Задача 10.2. Испарение воды

Определите скорость испарения воды (мг/с) в зависимости от ее температуры. Удельная теплота парообразования воды при температуре кипения равна $L=2300~\mathrm{kДж/kr}$. Испарением воды сквозь слой масла пренебречь.

Оборудование: кофейная чашка, бумажный стакан, горячая вода по требованию, подсолнечное масло по требованию, термометр или мультиметр с термопарой, секундомер, весы по требованию.

Решение

Непосредственное измерение зависимости массы от температуры не является оптимальным методом из-за недостаточной точности весов и чувствительности показаний весов к нагреву.

Из кофейной чашки и стаканчика сделаем калориметр. Рассмотрим два случая: когда поверхность воды открыта и с нее происходит испарение, и когда на поверхности воды имеется масляный слой, который существенно замедляет процесс испарения.

Запишем уравнение теплового баланса, считая, что скорость теплообмена подчиняется закону Ньютона—Рихмана. Для открытой поверхности с испарением:

$$cm\Delta T_1 + L\Delta m = -\alpha (T_1 - T_0)\Delta t$$

Для закрытой поверхности без испарения:

$$cm\Delta T_2 = -\alpha \left(T_2 - T_0\right) \Delta t.$$

$$\alpha = -\frac{cm}{\left(T_2 - T_0\right)} \frac{\Delta T_2}{\Delta t} \tag{1}$$

Их разность:

$$cm\Delta(T_1 - T_2) + L\Delta m = -\alpha(T_1 - T_2)\Delta t$$

$$\frac{\Delta m}{\Delta t} = \frac{1}{L} \left(\alpha(T_2 - T_1) + cm \frac{\Delta(T_2 - T_1)}{\Delta t} \right). \tag{2}$$

Критерии оценивания 10.2

1. Измерена температура окружающей среды	1
2. Измерена зависимость температуры воды от времени без масла	2
(данные сведены в таблицу)	
3. Измерена зависимость температуры воды от времени с маслом	2
(данные сведены в таблицу)	
4. Построен график зависимости T_2 от t	2
5. Выведена формула для α	1
6. Определен α	1
7. Построен график зависимости $T_2 - T_1$ от t	2
8. Выведена формула для скорости испарения воды	2
9. Определена скорость испарения воды — построен график $\Delta m/\Delta t$ от	2
T_1	