IV олимпиада имени Леонарда Эйлера, заключительный этап Решения заданий второго дня.

5. Можно ли расставить на ребрах куба 12 натуральных чисел так, чтобы суммы чисел на любых двух противоположных гранях отличались ровно на единицу? (Д. Храмцов)

Ответ. Нельзя. **Решение**. Допустим, так расставить числа удалось. Тогда сумма всех чисел на любых двух противоположных гранях нечетна. Сложив все три такие суммы, получим нечетный результат. Но в этом результате каждое ребро учтено ровно два раза, поскольку лежит в двух гранях куба, поэтому он должен быть четным. Противоречие.

6. Существуют ли такие различные натуральные числа a, b и c, что число a+1/a равно полусумме чисел b+1/b и c+1/c? (А. Голованов)

Ответ. Нет. **Решение**. Допустим, такие числа нашлись. Заметим, что если m и n — натуральные числа и m < n, то $m+1/m \le m+1 \le n < n+1/n$. Поэтому мы (поменяв, если нужно, местами числа b и c) можем считать, что b < a < c. Перепишем условие в виде (a-b)+(1/a-1/b)=(c-a)+(1/c-1/a). Поскольку каждое из чисел 1/a-1/b и 1/c-1/a отрицательно и больше -1, а числа a-b и c-a — целые, имеем a-b=c-a и 1/a-1/b=1/c-1/a. Поделив первое из этих двух уравнений на второе, получим -ab=-ac, откуда b=c — противоречие.

7. Углы треугольника ABC удовлетворяют условию $2\angle A + \angle B = \angle C$. Внутри этого треугольника на биссектрисе угла A выбрана точка K такая, что BK = BC. Докажите, что $\angle KBC = 2\angle KBA$. (С. Берлов)

Первое решение. Поскольку $\angle C > \angle A + \angle B$, то $\angle C > 90^\circ$. Выберем на луче AC точку T таким образом, что BC = BT. Заметим, что $\angle ATB = \angle BCT = \angle A + \angle B$. Поскольку $2\angle A + \angle B = \angle C$, имеем $3\angle A + 2\angle B = \angle A + \angle B + \angle C = 180^\circ$, откуда $\angle CBT = \angle A \Rightarrow \angle ABT = \angle A + \angle B = \angle ATB$. Значит, точка K лежит на оси симметрии равнобедренного треугольника BAT, откуда BK = KT. Итак, BT = BC = BK = KT, то есть треугольник BKT — равносторонний, откуда $\angle KBC = 60^\circ - \angle CBT = 60^\circ - \angle A$, а $\angle ABK = 30^\circ - \angle A/2 = \angle KBC/2$. **Второе решение**. Выберем точку L на биссектрисе угла A внутри треугольника таким образом, чтобы выполнялось условие $\angle LBC = 2\angle LBA$. Чтобы доказать, что точки L и K совпадут, достаточно доказать, что BL = BC. Пусть биссектриса угла CBL пересекает AC в точке N. Тогда $\angle BNC = \angle A + 2\angle B/3 = \angle A/3 + \angle B/3 + (\angle B/3 + 2\angle A/3) = (\angle A + \angle B + \angle C)/3 = 60^\circ$. Заметим, что L — точка пересечения биссектрис треугольника ABN. Значит, $\angle LNB = 60^\circ$, и треугольники BCN и BLN равны по стороне BN и двум прилежащим K ней углам, откуда и следует равенство BL = BC.

8. Пусть n — натуральное число, большее 1. У Кости есть прибор, устроенный так, что если в него положить 2n+1 различных по весу монет, то он укажет, какая из монет — средняя по весу среди положенных. Барон Мюнхгаузен дал Косте 4n+1 различных по весу монет и про одну из них сказал, что она является средней по весу. Как Косте, использовав прибор не более n+2 раз, выяснить, прав ли барон? (К. Кноп)

Решение. Пусть M — монета, которую барон считает средней по весу. Костя может действовать по следующему алгоритму:

- 0. Счетчик повторов установим равным 0. Положим в прибор монету M и еще какие-то 2n монет.
- 1. Пока значение счетчика не достигло n, делаем следующее: если прибор укажет на M как среднюю, то перейдем к шагу 2; если прибор укажет на другую монету, то выкинем ее из прибора, добавим в прибор любую из остальных (не выкинутых ранее) монет, увеличим счетчик повторов на 1 и вернемся к шагу 1; если счетчик повторов равен n, то барон не прав. Конец.
- 2. Оставим в приборе монету M и заменим все остальные 2n монет (на все прочие 2n монет). Если прибор снова покажет на M как на среднюю, то барон прав, иначе не прав.

Обоснование вывода, сделанного на шаге 2. Если M — средняя по весу в двух последних тестированиях, то в каждом из них были n монет легче M и n монет тяжелее M. Значит, всего есть 2n монет легче M и 2n монет тяжелее. Следовательно, M — средняя по весу. Если же в предпоследнем тестировании M средняя, а в последнем нет, то M тяжелее, чем ровно n+x монет, где x не равно n, — a, значит, точно не средняя по весу из всех монет.

Обоснование вывода, сделанного в конце шага 1. Пусть в i-ом тестировании было x_i монет легче монеты M. Без ограничения общности можно считать, что при первом тестировании M была тяжелее средней монеты, то есть $x_1 > n$. Далее, если добавленная после i-го тестирования монета легче M, то $x_{i+1} = x_i$, иначе $x_{i+1} = x_i - 1$. Если счетчик повторов достиг n, это значит, что мы выкинули n монет, и при этом x_i никогда не становилось равным n. Но тогда все x_i больше n, и, в частности, $x_n > n$. Так как уже найдены x_n не выкинутых и n выкинутых монет, которые легче M, и $x_n + n > 2n$, то M— точно не средняя.