IX олимпиада имени Леонарда Эйлера, заключительный этап

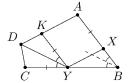
Решения заданий второго дня.

5. Некоторое натуральное число а разделили с остатком на числа 1, 2, 3, ..., 1000. Могло ли так случиться, что среди остатков ровно по 10 раз встретятся числа 0, 1, 2, 3, ..., 99? (С. Берлов)

Ответ. Не могло. **Решение**. Из условия следует, что все остатки от деления числа a на числа от 1 до 1000 меньше 100. Пусть остаток от деления числа a на 100 равен r. Тогда при делении a на любое число, кратное 100, должен получаться остаток вида r+100k, где k — неотрицательное целое число. Так как по условию остатки от деления a на 200, 300, ..., 900, 1000 не превосходят 99, все они тоже равны r. Но тогда такой же остаток получится и при делении a на любой делитель тысячи, больший 100, например, на 250. Таким образом, остаток r должен встречаться по крайней мере 11 раз, что противоречит условию задачи.

6. В выпуклом четырёхугольнике ABCD углы A и C равны 100°. На сторонах AB и BC выбраны точки X и Y соответственно так, что AX = CY. Оказалось, что прямая YD параллельна биссектрисе угла ABC. Найдите угол AXY. (А. Кузнецов, C. Берлов)

Решение. Проведём через точку *Y* прямую, параллельную *AB*. Пусть она пересечёт *AD* в точке *K*. Тогда $\angle DYC = \angle DYK$ и $\angle C = 100^\circ = \angle BAD = \angle YKD$, поэтому треугольники *DYC* и *DYK* равны по двум углам и стороне. Поэтому YK = YC = AX и AXYK — параллелограмм. Но тогда $\angle AXY = \angle AKY = 80^\circ$.



7. Дана окружность длины 90. Можно ли отметить на ней 10 точек так, чтобы среди дуг с концами в этих точках имелись дуги со всеми целочисленными длинами от 1 до 89? (К. Кноп)

Ответ. Нельзя. **Решение**. 10 точек разбивают окружность на 90 дуг. Мы должны получить 45 дуг различной нечётной длины. Так как четных дуг 44, то дуг нечётной длины не более 90–44 = 46, при этом дуга длины 45 не может быть единственной, потому что это полуокружность. Следовательно, нам нужны ровно 46 нечётных дуг.

Возьмём любую из 10 точек в качестве начала отсчёта. Если дуга от нее до i-ой точки нечётна, то i-ую точку назовём hevemhoŭ, а в противном случае — vemhoŭ. Если всего есть k нечетных точек и 10-k чётных (включая начало отсчёта), то нечётные длины дуг будут ровно между нечётными и чётными точками, то есть их количество равно 2k(10-k). Но уравнение 2k(10-k) = 46 не имеет целых решений, так как 23 — простое число, поэтому выбрать нужным образом 10 точек невозможно.

Замечание. На окружности длины 91 поставить 10 точек, обеспечив все различные дуги от 1 до 90, возможно. Одно из решений — перечислены расстояния между соседними точками — (1, 5, 4, 13, 3, 8, 7, 12, 2, 36).

8. Дано нечётное натуральное число a, большее 100. На доску выписали все натуральные числа вида $\frac{a-n^2}{4}$, где n — натуральное число. Оказалось, что при $n \le \sqrt{a/5}$ все они простые. Докажите, что и каждое из остальных выписанных на доску натуральных чисел простое или равно единице. (А. Храбров)

Решение. Если a при делении на 4 дает 3, на доске вообще нет целых чисел, потому что квадраты при делении на 4 могут давать только остатки 0 или 1. В этом случае утверждение задачи, очевидно, верно. Дальше считаем, что a дает при делении на 4 остаток 1. Тогда a=4p+1, где $p=\frac{a-1}{4}$ — простое. Заметим, что число $\frac{a-n^2}{4}$ тут является целым тогда и только тогда, когда n нечётно. Поскольку при нечётном n разность $p-\frac{a-n^2}{4}=\frac{n^2-1}{4}$ чётна, все целые числа вида $\frac{a-n^2}{4}$ здесь нечётны.

Пусть для некоторого a условие задачи выполнено, а заключение — нет. Рассмотрим наименьшее такое n, что число $b=\frac{a-n^2}{4}$ — составное. Обозначим через u его наименьший простой делитель. Так как $n>\sqrt{a/5}$,

выполнено неравенство $b = \frac{a-n^2}{4} < a/5$. Поэтому $u < \sqrt{\frac{a}{5}} < n$, откуда -n < n—2u < n. Значит, (n— $2u)^2 < n^2$, при-

чём n—2u не равно 0, так как n нечётно. Легко видеть, что число $\frac{a-(n-2u)^2}{4}$ натуральное, делится на u и больше b, то есть оно не простое и не единица, Следовательно, число |n-2u|, меньшее, чем n, также порождает составное натуральное число, что противоречит минимальности n.

Замечание. Условие задачи выполнено, например, для a = 173.