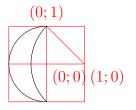
Олимпиада школьников «Ломоносов» по математике

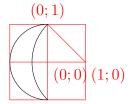
Заключительный этап 2023/24 учебного года для 11 класса


Задача 1

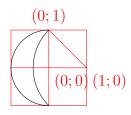
- **В-1** Болельщики должны выбрать 6 лучших хоккеистов чемпионата: одного вратаря, двух защитников и трех нападающих. Среди претендентов: 3 вратаря, 5 защитников, 6 нападающих и 3 «универсала». «Универсал» игрок, хороший в разных ролях, который поэтому может быть выбран как в качестве защитника, так в качестве нападающего (но не вратаря). Сколько существует способов выбрать эту шестерку? Требуется получить числовое значение.
- **В-2** Болельщики должны выбрать 6 лучших хоккеистов чемпионата: одного вратаря, двух защитников и трех нападающих. Среди претендентов: 3 вратаря, 4 защитника, 7 нападающих и 3 «универсала». «Универсал» игрок, хороший в разных ролях, который поэтому может быть выбран как в качестве защитника, так в качестве нападающего (но не вратаря). Сколько существует способов выбрать эту шестерку? Требуется получить числовое значение.
- **В-3** Болельщики должны выбрать 6 лучших хоккеистов чемпионата: одного вратаря, двух защитников и трех нападающих. Среди претендентов: 2 вратаря, 5 защитников, 6 нападающих и 3 «универсала». «Универсал» игрок, хороший в разных ролях, который поэтому может быть выбран как в качестве защитника, так в качестве нападающего (но не вратаря). Сколько существует способов выбрать эту шестерку? Требуется получить числовое значение.
- **В-4** Болельщики должны выбрать 6 лучших хоккеистов чемпионата: одного вратаря, двух защитников и трех нападающих. Среди претендентов: 2 вратаря, 4 защитника, 7 нападающих и 3 «универсала». «Универсал» игрок, хороший в разных ролях, который поэтому может быть выбран как в качестве защитника, так в качестве нападающего (но не вратаря). Сколько существует способов выбрать эту шестерку? Требуется получить числовое значение.

Задача 2

B-1

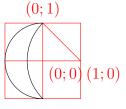

Живописец закрасил акварелью полумесяц на клетчатой бумаге. Контур полумесяца состоит из двух дуг — одна от окружности с центром в (0;0), проходящей через (0;1), другая — от окружности с центром в (1;0), проходящей через (0;1).

К утру краска расплылась так, что каждая точка полумесяца превратилась в круг радиуса 0.5. Найдите площадь получившейся фигуры.


B-2

Живописец закрасил акварелью полумесяц на клетчатой бумаге. Контур полумесяца состоит из двух дуг — одна от окружности с центром в (0;0), проходящей через (0;1), другая — от окружности с центром в (1;0), проходящей через (0;1).

К утру краска расплылась так, что каждая точка полумесяца превратилась в круг радиуса 0.25. Найдите площадь получившейся фигуры.


Живописец закрасил акварелью полумесяц на клетчатой бумаге. Контур полумесяца состоит из двух дуг — одна от окружности с центром в (0;0), проходящей через (0;1), другая — от окружности с центром в (1;0), проходящей через (0;1).

К утру краска расплылась так, что каждая точка полумесяца превратилась в круг радиуса 1/3. Найдите площадь получившейся фигуры.

B-4

Живописец закрасил акварелью полумесяц на клетчатой бумаге. Контур полумесяца состоит из двух дуг — одна от окружности с центром в (0;0), проходящей через (0;1), другая — от окружности с центром в (1;0), проходящей через (0;1).

K утру краска расплылась так, что каждая точка полумесяца превратилась в круг радиуса $\sqrt{2}/2$. Найдите площадь получившейся фигуры.

Задача 3

В-1 Решите систему уравнений

$$\begin{cases} (xy-3+3x-y)|y-x-9| = (x-4)|xy-3+3x-y|, \\ \sqrt{y-x+9} = y-4. \end{cases}$$

В-2 Решите систему уравнений

$$\begin{cases} (xy+3x-2y-6)|y-x-8| = (x-5)|xy+3x-2y-6|, \\ \sqrt{y-x+10} = y-4. \end{cases}$$

В-3 Решите систему уравнений

$$\begin{cases} (xy+4x-y-4)|y-x-8| = (x-4)|xy+4x-y-4|, \\ \sqrt{y-x+10} = y-3. \end{cases}$$

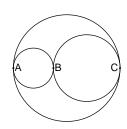
В-4 Решите систему уравнений

$$\begin{cases} (xy + 2x - y - 2)|y - x - 10| = (x - 4)|xy + 2x - y - 2|, \\ \sqrt{y - x + 8} = y - 5. \end{cases}$$

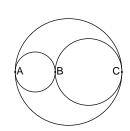

Олимпиада школьников «Ломоносов» по математике

Заключительный этап 2023/24 учебного года для 11 класса

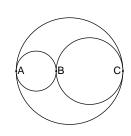
Задача 4


B-1

Автодром состоит из трех попарно касающихся кольцевых трасс (см. рисунок). Автомобиль в любой точке касания может продолжать движение по любой из двух возможных трасс, но нигде не может разворачиваться на 180° . По каждой из трех трасс автомобиль едет со своей скоростью, так что любую из дуг AB длиной 15 км он проезжает за 7 минут, любую из дуг BC длиной 25 км — за 11 минут, а любую из дуг AC — за 17 минут. Выехав из точки A, автомобиль через 1 час 25 минут оказался в ней же. Сколько километров проехал автомобиль?


B-2

Автодром состоит из трех попарно касающихся кольцевых трасс (см. рисунок). Автомобиль в любой точке касания может продолжать движение по любой из двух возможных трасс, но нигде не может разворачиваться на 180^{o} . По каждой из трех трасс автомобиль едет со своей скоростью, так что любую из дуг AB длиной 15 км он проезжает за 5 минут, любую из дуг BC длиной 25 км — за 13 минут, а любую из дуг AC — за 19 минут. Выехав из точки A, автомобиль через 1 час 35 минут оказался в ней же. Сколько километров проехал автомобиль?


B-3

Автодром состоит из трех попарно касающихся кольцевых трасс (см. рисунок). Автомобиль в любой точке касания может продолжать движение по любой из двух возможных трасс, но нигде не может разворачиваться на 180^{o} . По каждой из трех трасс автомобиль едет со своей скоростью, так что любую из дуг AB длиной 13 км он проезжает за 7 минут, любую из дуг BC длиной 21 км — за 11 минут, а любую из дуг AC — за 17 минут. Выехав из точки A, автомобиль через 1 час 25 минут оказался в ней же. Сколько километров проехал автомобиль?

B-4

Автодром состоит из трех попарно касающихся кольцевых трасс (см. рисунок). Автомобиль в любой точке касания может продолжать движение по любой из двух возможных трасс, но нигде не может разворачиваться на 180° . По каждой из трех трасс автомобиль едет со своей скоростью, так что любую из дуг AB длиной 13 км он проезжает за 5 минут, любую из дуг BC длиной 27 км — за 13 минут, а любую из дуг AC — за 19 минут. Выехав из точки A, автомобиль через 1 час 35 минут оказался в ней же. Сколько километров проехал автомобиль?

Олимпиада школьников «Ломоносов» по математике

Заключительный этап 2023/24 учебного года для 11 класса

В-1 Функция y=f(x) такова, что $f\left(\frac{x+1}{x-1}\right)=\frac{1}{x-1}$. Найдите тангенс угла наклона касательной к графику функции

$$g(x) = \underbrace{f(f(\dots f(x)))}_{10}$$

в точке x = 0.

В-2 Функция y = f(x) такова, что $f\left(\frac{x-2}{x+2}\right) = -\frac{2}{x+2}$. Найдите тангенс угла наклона касательной к графику функции

$$g(x) = \underbrace{f(f(\dots f(x)))}_{11}$$

в точке x = 0.

В-3 Функция y=f(x) такова, что $f\left(\frac{x-1}{x+1}\right)=-\frac{1}{x+1}$. Найдите тангенс угла наклона касательной к графику функции $g(x)=\underbrace{f(f(\dots f(x)))}_{0}$

в точке x = 0.

В-4 Функция y=f(x) такова, что $f\left(\frac{x+2}{x-2}\right)=\frac{2}{x-2}$. Найдите тангенс угла наклона касательной к графику функции $g(x)=\underbrace{f(f(\ldots f(x)))}_{12}$

в точке x = 0.

Задача 6

В-1 Старинный подземный ход имеет свод параболической формы (то есть в поперечном сечении туннель ограничен полом — осью Ox и графиком некоторой параболы $y=a-bx^2$). Ширина туннеля (измеряется по полу) равна 24, высота туннеля равна 18. Ход укрепили распорками — на параболе отметили точки A,B,C,D и соединили их между собой балками. Балки AB и CD параллельны полу, AD пересекается с BC, и при этом $\angle ACB = \angle ADB = 90^\circ$ Найдите расстояние между балками AB и CD.

В-2 Старинный подземный ход имеет свод параболической формы (то есть в поперечном сечении туннель ограничен полом — осью Ox и графиком некоторой параболы $y=a-bx^2$). Ширина туннеля (измеряется по полу) равна 16, высота туннеля равна 8. Ход укрепили распорками — на параболе отметили точки A,B,C,D и соединили их между собой балками. Балки

AB и CD параллельны полу, AD пересекается с BC, и при этом $\angle ACB = \angle ADB = 90^\circ$ Найдите расстояние между балками AB и CD.

- **В-3** Старинный подземный ход имеет свод параболической формы (то есть в поперечном сечении туннель ограничен полом осью Ox и графиком некоторой параболы $y=a-bx^2$). Ширина туннеля (измеряется по полу) равна 20, высота туннеля равна 10. Ход укрепили распорками на параболе отметили точки A,B,C,D и соединили их между собой балками. Балки AB и CD параллельны полу, AD пересекается с BC, и при этом $\angle ACB = \angle ADB = 90^\circ$ Найдите расстояние между балками AB и CD.
- **В-4** Старинный подземный ход имеет свод параболической формы (то есть в поперечном сечении туннель ограничен полом осью Ox и графиком некоторой параболы $y=a-bx^2$). Ширина туннеля (измеряется по полу) равна 18, высота туннеля равна 9. Ход укрепили распорками на параболе отметили точки A,B,C,D и соединили их между собой балками. Балки AB и CD параллельны полу, AD пересекается с BC, и при этом $\angle ACB = \angle ADB = 90^\circ$ Найдите расстояние между балками AB и CD.

Задача 7

- **В-1** Пусть S(n) означает сумму цифр натурального числа n. Найти наибольшее 100-значное натуральное число n, удовлетворяющее условию: для всех натуральных m $(1 \le m \le n)$ справедливы равенства S(mn) = S(n).
- **B-2** Пусть S(n) означает сумму цифр натурального числа n. Найти наибольшее 75-значное натуральное число n, удовлетворяющее условию: для всех натуральных m $(1 \le m \le n)$ справедливы равенства S(mn) = S(n).
- **В-3** Пусть S(n) означает сумму цифр натурального числа n. Найти наибольшее 85-значное натуральное число n, удовлетворяющее условию: для всех натуральных m $(1 \le m \le n)$ справедливы равенства S(mn) = S(n).
- **В-4** Пусть S(n) означает сумму цифр натурального числа n. Найти наибольшее 90-значное натуральное число n, удовлетворяющее условию: для всех натуральных m $(1 \le m \le n)$ справедливы равенства S(mn) = S(n).

Задача 8

- **B-1** Сколько точек пространства с целочисленными координатами принадлежат треугольнику с вершинами (3,4,5), (11,10,6), (5,8,9)? Точки на вершинах и сторонах тоже считаются.
- **В-2** Сколько точек пространства с целочисленными координатами принадлежат треугольнику с вершинами (-7, 4, 3), (1, 5, 9), (-5, 8, 7)? Точки на вершинах и сторонах тоже считаются.
- **В-3** Сколько точек пространства с целочисленными координатами принадлежат треугольнику с вершинами (-5, -5, -5), (1, 3, -4), (-1, -3, -1)? Точки на вершинах и сторонах тоже считаются.
- **В-4** Сколько точек пространства с целочисленными координатами принадлежат треугольнику с вершинами (1,1,3), (7,2,11), (5,5,5)? Точки на вершинах и сторонах тоже считаются.