Олимпиада «Ломоносов». 5-9 классы. Заключительный тур

Указание к оформлению решения. Во всех задачах, требующих численного ответа, должны быть приведены расчеты. Все качественные вопросы требуют обоснования. Только ответы без расчетов и/или обоснований не оцениваются.

1. Массовые доли металла в его оксиде и хлориде отличаются в 1.585 раза (в оксиде больше), а степени окисления – в 2 раза. Определите металл и формулы соединений. **(8 баллов)**

Решение. Оксидов металлов в высоких степенях окисления больше, чем хлоридов, поэтому предположим, что более высокая степень окисления соответствует оксиду. Пусть формула оксида \mathbf{MO}_n , тогда формула хлорида \mathbf{MCl}_n (при равном числе атомов хлора и кислорода степени окисления металла в оксиде и хлориде отличаются ровно в 2 раза). В каждой формульной единице – по одному атому металла, поэтому отношение массовых долей металла обратно пропорционально отношению молярных масс соединений:

$$\frac{M(M) + 35.5n}{M(M) + 16n} = 1.585,$$

$$M(M) = 17.33n.$$

Перебором значений находим, что

$$n=3,:$$
 $M(\mathbf{M})=52.0\ {\mbox{г/моль}}.$

Металл **M** — это хром, Cr. Формулы соединений хрома — CrO₃ и CrCl₃. *Ответ*: Cr; CrO₃, CrCl₃.

2. К 100 г слегка нагретого насыщенного раствора карбоната натрия добавляли концентрированную соляную кислоту (36.5% HCl) до прекращения выделения газа. Рассчитайте массовую долю соли в полученном растворе. Выпадет ли осадок? Растворимости веществ при температуре опыта (на 100 г воды): 48.5 г Na₂CO₃, 36.4 г NaCl. (14 баллов)

Решение. Уравнение протекающей реакции:

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2\uparrow + H_2O.$$

Массовая доля карбоната натрия в насыщенном растворе

$$\omega$$
(Na₂CO₃)Hac. = 48.5 / 148.5 = 0.327,

масса и количество вещества соли в растворе составляют

$$m(\text{Na}_2\text{CO}_3) = 100 \cdot 0.327 = 32.7 \text{ г},$$

v(Na₂CO₃) = 32.7 / 106 = 0.308 моль = v(CO₂).

Необходимое количество HCl

$$v(HCl) = 2 \cdot 0.308 = 0.616$$
 моль, $m(p-pa\ HCl) = 0.616 \cdot 36.5 / 0.365 = 61.6\ г.$

Масса конечного раствора:

$$m(p-pa NaCl) = m(p-pa Na_2CO_3) + m(p-pa HCl) - m(CO_2) = 100 + 61.6 - 0.308 \cdot 44 = 148.05 \text{ r},$$

$$v(\text{NaCl}) = v(\text{HCl}) = 0.616 \text{ моль},$$

 $m(\text{NaCl}) = 0.616 \cdot 58.5 = 36.04 \text{ г},$

$$\omega$$
(NaCl) = 36.04 / 148.05 = 0.243 (24.3%).

Массовая доля хлорида натрия в насыщенном растворе составляет

$$\omega$$
(NaCl)Hac. = 36.4 / 136.4 = 0.267.

Поскольку концентрация NaCl в конечном растворе оказалась меньше, чем концентрация насыщенного раствора, осадок соли не выпадет.

Ответ: 24.3% NaCl. Осадок не выпадет.

3. При нагревании выше 100 °C хлорат аммония полностью разлагается, образуя газовую смесь из 4 компонентов, плотность которой равна плотности воздуха. При охлаждении до комнатной температуры один из компонентов конденсируется, оставшаяся газовая смесь тяжелее воздуха в 1.5 раза. Напишите уравнение разложения и подтвердите его расчетом.

(12 баллов)

Решение. Равенство плотностей газов означает равенство молярных масс, значит, средняя молярная масса первой смеси составляет

$$M_{\rm cp}$$
(смеси 1) = 29 г/моль.

Тогда

$$M_{\rm cp}$$
(смеси 2) = 29 · 1.5 = 43.5 г/моль. $M({
m NH_4ClO_3}) = 101.5$ г/моль.

Из одного моля соли образуется 101.5 / 29 = 3.5 моль газов, при охлаждении конденсируется вода и остается смесь с молярной массой 43.5 г/моль. Можно предположить, что весь водород в составе соли перешел при разложении в воду, а остальные продукты разложения — это простые вещества. Получаем следующее уравнение реакции разложения:

$$\mathrm{NH_4ClO_3} \xrightarrow{t} 1/2\mathrm{N_2} + 1/2\mathrm{Cl_2} + 1/2\mathrm{O_2} + 2\mathrm{H_2O}.$$
 $M_{\mathrm{cp}}(\mathrm{N_2,Cl_2,O_2}) = (0.5 \cdot 28 + 0.5 \cdot 71 + 0.5 \cdot 32) \, / \, 1.5 = 43.7 \,$ г/моль. $D_{\mathrm{возд}} = 43.7 \, / \, 29 \approx 1.5 - \mathrm{все} \,$ сходится. $Omsem: \mathrm{NH_4ClO_3} \rightarrow 1/2\mathrm{N_2} + 1/2\mathrm{Cl_2} + 1/2\mathrm{O_2} + 2\mathrm{H_2O}.$

4. Неорганический пигмент очень красивого цвета, от лимонного до ярко-желтого, содержит в своем составе хромат свинца и еще один компонент белого цвета, содержание которого в пигменте составляет 48.4% по массе и 50% по количеству вещества. Оба компонента пигмента можно получить из раствора нитрата свинца. Определите формулу пигмента. Напишите уравнения реакций получения белого компонента из раствора нитрата свинца и растворения пигмента в концентрированной щелочи. **(16 баллов)**

Pешение. Формула пигмента — $PbCrO_4 \cdot Pb\mathbf{X}$ (по условию, компоненты в равных количествах). Молярная масса пигмента составляет

$$M(пигмента) = M(PbCrO_4) / \omega(PbCrO_4) = 323 / (1 - 0.484) = 626 г/моль.$$

Найдем массу аниона второго компонента:

$$M(\mathbf{X}) = 626 - 323 - 207 = 96$$
 г/моль,

что соответствует сульфат-иону ($\mathbf{X} - \mathrm{SO_4}$). Итак, искомая формула пигмента — PbCrO₄ · PbSO₄. Уравнения реакций:

$$\begin{split} Pb(NO_3)_2 + K_2SO_4 &\rightarrow PbSO_4 \\ \downarrow + 2KNO_3, \\ PbCrO_4 \cdot PbSO_4 + 8KOH &\rightarrow 2K_2[Pb(OH)_4] + K_2SO_4 + K_2CrO_4. \end{split}$$

Ответ: PbCrO₄ · PbSO₄, пигмент крон лимонный.

Задача 5. Некоторый природный радиоактивный нуклид распадается одновременно по двум направлениям — с образованием инертного газа и щелочноземельного металла. Оба продукта распада имеют одинаковое массовое число и являются наиболее распространенными изотопами для своих элементов. Установите формулу радиоактивного нуклида и напишите уравнения реакций его радиоактивного распада. (12 баллов)

Решение. Инертный газ и щелочноземельный металл отличаются по порядковому номеру на 2 и имеют одинаковое массовое число. Это возможно, только если исходный нуклид – щелочной металл, который одновременно испытывает β -распад и электронный захват. Среди устойчивых изотопов щелочноземельных металлов и инертных газов одинаковое массовое число имеют только аргон-40 и кальций-40, это и есть продукты распада, а исходный изотоп – это 40 К. Уравнения распада:

$$_{19}^{40}$$
K $\rightarrow _{20}^{40}$ Ca + $_{-1}^{0}e$,

$$^{40}_{19}\text{K} + ^{0}_{-1}e \rightarrow ^{40}_{18}\text{Ar}$$
.

Ответ: ⁴⁰К.

6. Напишите уравнения реакций согласно схеме превращений:

$$Y$$
87.5% N

+NaCIO

 $X \xrightarrow{+KOH} NH_3 \xrightarrow{+FeCl_3} Z \xrightarrow{+Cl_2} KOH K_2FeO_4 \longrightarrow простое$
вещество

простое
вещество

(18 баллов)

Решение.

- 1) $NH_4NO_3 + KOH \rightarrow NH_3 \uparrow + KNO_3 + H_2O$
- 2) $2NH_3 + 2KMnO_4 \xrightarrow{t} N_2 + 2MnO_2 + 2KOH + 2H_2O$
- 3) $2NH_3 + NaClO \rightarrow N_2H_4 + NaCl + H_2O$
- 4) $3NH_3 + FeCl_3 + 3H_2O \rightarrow Fe(OH)_3 \downarrow + 3NH_4Cl$
- 5) $2\text{Fe}(OH)_3 + 3\text{Cl}_2 + 10\text{KOH} \rightarrow 2\text{K}_2\text{Fe}O_4 + 6\text{KCl} + 8\text{H}_2\text{O}$
- 6) $4K_2FeO_4 + 10H_2SO_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 10H_2O_4 \rightarrow 3O_2 \uparrow + 2Fe_2(SO_4)_3 + 4K_2SO_4 + 2Fe_2(SO_4)_3 + 2Fe$

(принималось также окисление HCl с выделением Cl_2 и любые другие разумные реакции с образованием простых веществ).

Omeem:
$$\mathbf{X} - \mathrm{NH_4NO_3}$$
, $\mathbf{Y} - \mathrm{N_2H_4}$, $\mathbf{Z} - \mathrm{Fe}(\mathrm{OH})_3$.

7. Соль **X**, состоящая из трех элементов, — интересный пример изомерии в мире неорганических соединений. Один из двух изомеров этой соли, **X1**, образуется из оксида натрия при нагревании до 350 °C в атмосфере газа **Y**, который примерно в 1.5 раза тяжелее воздуха (*реакция 1*). Этот же изомер образуется при пропускании газа **Z** (чуть-чуть тяжелее воздуха) через раствор металлического натрия в жидком аммиаке (*реакция 2*). Анион соли **X1** — плоский, имеет форму равнобедренной трапеции.

Более устойчивый изомер, **X2**, получают путем восстановления соли **D** (33.3% Na по массе) в водном растворе амальгамой натрия (*реакция 3*). **X2** растворим в воде, раствор имеет щелочную среду. Из растворов можно получить кристаллогидраты, гексагидрат содержит около 50% воды по массе. Под действием соляной кислоты и углекислого газа из раствора **X2** выделяется газ **Y** (*реакции 4 и 5*).

Установите формулы веществ X, Y, Z, D (с расчетом) и напишите уравнения реакций (1–5). Приведите структурную формулу аниона соли X. Предположите, чем отличаются анионы солей X1 и X2. (20 баллов)

Решение. Ключ к решению – газ Y:

$$M(\mathbf{Y}) \approx 1.5 \cdot 29 \approx 44$$
 г/моль.

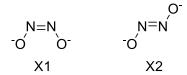
Это не может быть CO_2 (у карбоната натрия нет изомеров) или C_3H_8 , следовательно, $\mathbf{Y}-$ это N_2O . При взаимодействии с Na_2O образуется $Na_2N_2O_2$ (*цис*-изомер $\mathbf{X}\mathbf{1}$). Формула \mathbf{X} подтверждается составом кристаллогидрата: массовая доля воды в гексагидрате $Na_2N_2O_2\cdot 6H_2O$ составляет

$$\omega(H_2O) = 6 \cdot 18 / 214 = 0.505 \approx 0.5.$$

Газ **Z**, очевидно, NO:

$$D_{\text{возд}}(\text{NO}) = 30 / 29 = 1.03.$$

Соль \mathbf{D} – это NaNO₂, в котором


$$\omega(\text{Na}) = 23 / 69 = 0.333.$$

Уравнения реакций:

- 1) $Na_2O + N_2O \rightarrow Na_2N_2O_2$
- 2) $2Na + 2NO \rightarrow Na_2N_2O_2$
- 3) $2NaNO_2 + 4Na/Hg + 2H_2O \rightarrow Na_2N_2O_2 + 4NaOH + 4Hg$
- 4) $Na_2N_2O_2 + 2HCl \rightarrow N_2O\uparrow + 2NaCl + H_2O$
- 5) $Na_2N_2O_2 + CO_2 \rightarrow N_2O^{\uparrow} + Na_2CO_3$

Структурная формула аниона $N_2O_2^{2-}$: —O—N=N—O—

Изомеры **X1** и **X2** – геометрические, *цис-транс*:

Omeem: $\mathbf{X} - Na_2N_2O_2$, $\mathbf{Y} - N_2O$, $\mathbf{Z} - NO$, $\mathbf{D} - NaNO_2$.