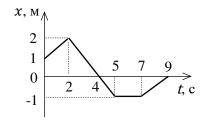
ОЛИМПИАДА "БУДУЩИЕ ИССЛЕДОВАТЕЛИ – БУДУЩЕЕ НАУКИ" 2022-2023 Физика, II тур

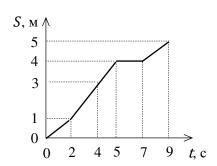
ОТВЕТЫ И РЕШЕНИЯ

8 класс

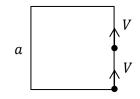
1. (25 баллов) График зависимости от времени координаты x частицы, совершающей движение вдоль оси x, приведен на рисунке. Нарисовать график зависимости пройденного частицей пути от времени.

Ответ. См. график на рисунке.





2. (25 баллов) Два жучка одновременно начинают движение со скоростью V по сторонам квадрата: один из вершины, другой с середины стороны (см. рис.). Через какое время расстояние между жучками достигнет минимального значения? Чему равно это значение? Длина стороны квадрата равна a.



Ответ. Минимальное расстояние равно $\frac{a}{2\sqrt{2}}$ и достигается через время $\frac{3a}{4V}$

Решение. В начале движения расстояние между жучками остается постоянным. После того, как один из жучков (верхний на рисунке) достигнет вершины квадрата, расстояние между жучками начнет уменьшаться (верхний жучок станет двигаться в сторону, а не от второго жучка, как до этого). Уменьшение расстояния продолжится до момента, когда жучки расположатся симметрично относительно вершины — на одинаковом расстоянии a/4 от нее. Действительно, в этот момент проекции векторов скоростей жучков на соединяющую их линию окажутся одинаковыми, т.е. скорость сближения жучков обратится в нуль. Это и означает достижение минимума расстояния (сближение меняется на удаление). Расстояние L между жучками в указанный момент находим как гипотенузу прямоугольного треугольника

$$L = \sqrt{\left(\frac{a}{4}\right)^2 + \left(\frac{a}{4}\right)^2} = \frac{a}{2\sqrt{2}}.$$

Время движения t до симметричного расположения жучков равно

$$t = \frac{3a}{4V}.$$

3. (25 баллов) В два одинаковых цилиндрических сосуда налиты равные объемы жидкостей с плотностями ρ_1 и ρ_2 ($\rho_2 > \rho_1$). После того, как в сосуд с менее плотной жидкостью поместили тело, объем которого в 4 раза меньше объема жидкости, силы давления на дно сосудов стали равными. Чему равна плотность тела?

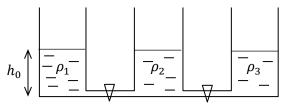
Ответ. Плотность тела равна $4(\rho_2 - \rho_1)$.

Решение. Запишем условие равенства сил давления на дно сосудов в виде

$$\rho_1 V g + \rho_{\scriptscriptstyle \mathrm{T}} \frac{1}{4} V g = \rho_2 V g,$$

где g — ускорение свободного падения, а V и $\rho_{\rm T}$ — объем жидкости и плотность тела. Отсюда находим, что $\rho_{\rm T}=4(\rho_2-\rho_1).$

4. (25 баллов) Три одинаковых цилиндрических сосуда стоят рядом на горизонтальном столе и соединены вблизи дна тонкими трубками, которые перекрыты кранами (см. рис.). Сосуды заполнены до уровня h_0 жидкостями с плотностями ρ_1 , ρ_2 , ρ_3 , причем $\rho_1 > \rho_2 > \rho_3$. В какой последовательности h_0



нужно открыть краны, чтобы получить максимальную высоту столба жидкости в одном из сосудов? Чему равна эта высота?

Ответ. Сначала нужно открыть кран между сосудами с жидкостями плотностей ρ_2 и ρ_3 . Высота столба жидкости будет равна $\frac{h_0}{2} \left(\frac{11}{3} - \frac{\rho_3}{\rho_2} - \frac{\rho_2 + \rho_3}{3\rho_1} \right)$.

Решение. Чтобы добиться максимального подъема уровня жидкости, нужно поднимать менее плотные жидкости. Следовательно, сначала нужно открыть кран между сосудами с жидкостями плотностей ρ_2 и ρ_3 . При этом часть жидкости плотности ρ_2 перетечет в сосуд с жидкостью плотности ρ_3 , подняв снизу весь столб наименее плотной жидкости. После открытия второго крана жидкость наибольшей плотности ρ_1 перетечет в соседние сосуды и поднимет снизу имеющиеся там столбы жидкостей. При этом в крайне правом на рисунке сосуде будет достигнут наибольший подъем уровня жидкости, а столб жидкости в этом сосуде будет состоять из жидкостей всех трех видов.

Для расчета высоты столба рассмотрим сначала ситуация после открытия крана между сосудами с жидкостями плотностей ρ_2 и ρ_3 . Запишем условие равенства давлений у дна этих сосудов в виде

$$\rho_2 h_2 = \rho_2 h_3 + \rho_3 h_0,$$

где h_2 и h_3 – высоты столбов жидкости с плотностью ρ_2 во втором и третьем сосудах. Учитывая, что $h_2+h_3=h_0$, находим, что

$$h_2 = \frac{h_0}{2} \left(1 + \frac{\rho_3}{\rho_2} \right), \quad h_3 = \frac{h_0}{2} \left(1 - \frac{\rho_3}{\rho_2} \right).$$

После открытия второго крана условия равенства давлений в сосудах можно записать как

$$\rho_1 h_1 = \rho_1 h_{12} + \rho_2 h_2$$
, $\rho_1 h_1 = \rho_1 h_{13} + \rho_2 h_3 + \rho_3 h_0$

где через h_{12} и h_{13} обозначены высоты столбов жидкости плотности ρ_1 во втором и третьем сосудах соответственно. Учитывая также, что $h_1+h_{12}+h_{13}=h_0$, находим

$$h_1 = \frac{h_0}{3} \left(1 + \frac{\rho_2 + \rho_3}{\rho_1} \right), \quad h_{12} = h_{13} = \frac{h_0}{3} \left(1 - \frac{\rho_2 + \rho_3}{2\rho_1} \right).$$

Полная высота столба в третьем сосуде будет равна

$$H_3 = h_{13} + h_3 + h_0 = \frac{h_0}{2} \left(\frac{11}{3} - \frac{\rho_3}{\rho_2} - \frac{\rho_2 + \rho_3}{3\rho_1} \right).$$