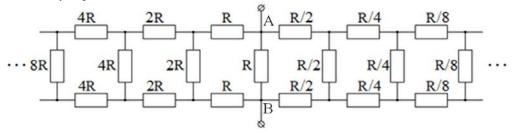
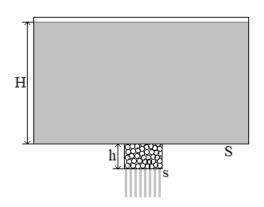

Межрегиональные предметные олимпиады КФУ профиль «Физика» заключительный этап 2023/24 учебный год 10 класс


Задача 1. (20 б.)

Световой луч проходит через систему, состоящую из прозрачных плоских параллельных слоев. Он падает из начальной среды (пронумерованной как 0) под углом α от перпендикуляра в первый слой. Показатели преломления слоев различны. Для них справедливо рекуррентное соотношение $n_i = \gamma n_{i-1}$, причем $\gamma < 1$. В какой по счету слой луч не сможет проникнуть? Предполагается, что n_0 достаточно велик, чтобы показатель преломления в этом слое был больше 1. Дайте ответ для $\alpha = 30^\circ$, $\gamma = 2^{-0.12}$. Ответ в общем виде приветствуется, но не обязателен для лостижения максимального балла.

Задача 2. (20 б.)


Найти сопротивление между точками А и В бесконечной цепи, изображенной на рисунке. Сопротивления резисторов указаны на рисунке.

Задача 3. (20 б.)

Ко дну сосуда площадью S снизу прикреплена коробочка высотой h и площадью основания s. Коробочка заполнена большим числом N одинаковых шариков, объем каждого из которых равен v. Шарики распределены хаотически таким образом, что образуемая ими среда в целом изотропна*. Сосуд заполнен жидкостью до уровня H. Оцените время, за которое объем ΔV будет вытекать из коробочки при установившемся течении. Уровень жидкости H в сосуде поддерживается постоянным. У верхнего и нижнего основания коробочки для жидкости нет никаких препятствий (решетки, крепления и т. д.), при этом шарики прочно скреплены между собой и со стенками коробочки. Капиллярными силами и вязким трением пренебречь.

*Изотропная среда — такая область пространства, физические свойства которой не зависят от направления.

Задача 4. (20 б.)

Для нагрева воздуха в помещении (далее - внешняя или окружающая среда) используют масляный обогреватель. Масляный обогреватель оснащен терморегулятором релейного типа, который работает следующим образом: при падении температуры масла ниже заданной температуры $T_{\rm y}$ (называемой температурой уставки) на небольшую величину ΔT (то есть температура масла равна $T_{\rm y} - \Delta T$), нагреватель включается, идет нагрев. Когда температура масла достигает величины $T_{\rm y} + \Delta T$, нагреватель отключается, масло остывает. Далее процесс повторяется.

Температура включенного нагревателя $T_{\rm H} > T_{\rm y} + \Delta T$. Площадь нагревателя $S_{\rm H}$, его коэффициент теплоотдачи $\alpha_{\rm H}$. Площадь теплоотдачи обогревателя во внешнюю среду $S_{\rm B}$, соответствующий коэффициент теплоотдачи $\alpha_{\rm B}$. Рабочий объем обогревателя заполнен маслом, масса которого m, а удельная теплоемкость c. Теплоемкостью корпуса пренебречь. Температура окружающей среды $T_{\rm B} < T_{\rm y} - \Delta T$, на обогревателе выставлена температура уставки $T_{\rm y}$. Считать, что $\Delta T << T_{\rm H} - T_{\rm y}$, $T_{\rm y} - T_{\rm B}$.

- 1) Найдите период между включениями терморегулятора (от включения до следующего включения нагревателя) в установившемся режиме работы прибора.
- 2) Получите вид зависимости соответствующей (полученному в пункте 1 периоду) частоты от разности температур уставки и внешней среды $T = T_{\rm y} T_{\rm B}$ (при $T_{\rm y} = const$) и постройте схематично график этой зависимости. Объясните полученный результат.

Для простоты считать нагреватель идеальным (мгновенно нагревающимся и остывающим), теплопроводность масла высокой (температура масла во всех точках объема одинакова).

Задача 5. (20 б.)

Один моль идеального одноатомного газа находится в расположенном горизонтально цилиндрическом сосуде. Порция газа ограничена вертикальным герметичным поршнем, который может двигаться вдоль оси цилиндра без трения. К поршню и дну сосуда прикреплена горизонтальная идеальная пружина (см. Рисунок). В начальном состоянии температура газа равна температуре окружающей среды, пружина не деформирована.

Объемом пружины можно пренебречь. Если начальную температуру газа, ограниченного поршнем, повысить в η раз, то объем газа повысится в μ раз. Найдите теплоёмкость **газа,** ограниченного поршнем, в **начальном** состоянии.