9 класс

Задача 1. Получение комплексов

1. Определить металл M_1 и сульфат A_1 можно через массовую долю металла. Для этого можно найти эквивалентную массу металла M_1 :

$$M_{9}(\mathrm{M_{1}}) = \frac{M_{9}(\mathrm{SO_{4}})}{1 - \omega(\mathrm{M_{1}})} - M_{9}(\mathrm{SO_{4}}) = \frac{48}{1 - 0.3793} - 48 = 29.33\ г/моль$$

При валентности равной двум молярная масса металла равна 58,66 г/моль, что соответствует никелю (молярная масса кобальта также близка к полученному значению, однако он не подходит по указанной окраске сульфата). Таким образом, металл M_1 – Ni, а соль A_1 – NiSO₄.

При прибавлении к сульфату никеля(II) концентрированного раствора аммиака получится аммиачный комплекс. Наиболее вероятно, что в координационной сфере будет шесть молекул аммиака (КЧ 6 типично для никеля(II)), а в качестве противоиона может выступать сульфат или гидроксид (т.к. комплекс получен в концентрированном растворе основания). Для установления формулы комплекса \mathbf{K}_1 и определения противоиона следует найти молярную массу, воспользовавшись содержанием никеля:

$$M(K_1) = \frac{M(Ni)}{\omega(Ni)} = \frac{58,69}{0.3012} = 194,85 \ г/моль$$

Единственный разумный вариант, подходящий под такую массу, это гидроксид гексаамминникеля(II). Т.к. с вычетом массы никеля и шести молекул аммиака получается около 34 г/моль, что соответствует двум гидроксогруппам. Таким образом, противоион — гидроксид, а формула комплекса K_1 [Ni(NH₃)₆](OH)₂.

Исходя из условия задачи, \mathbf{K}_2 должен представлять собой цианидный комплекс, общую формулу которого можно записать как $\mathbf{K}_x[\mathbf{M}(CN)_y]$. Тогда атомная масса металла \mathbf{M}_2 равна:

$$M(M_2) = \frac{xM(K) + yM(CN)}{1 - \omega(M_2)} - (xM(K) + yM(CN))$$
$$= \frac{39.1x + 26.02y}{0.8484} - (39.1x + 26.02y)$$

Формулу металла можно установить перебором числа ионов калия и цианид-ионов в составе комплекса, учитывая, что типичные координационные числа в цианидных комплексах 2, 4 и 6, а степень окисления металла должна быть от +1 до +3. Можно составить таблицу атомных весов металла для возможных комбинаций x и y:

	y = 2	y = 4	<i>y</i> = 6
x = 1	16,29 г/моль	25,58 г/моль	-
x = 2	-	32,57 г/моль	-
x = 3	-	39,55 г/моль	48,86 г/моль
x = 4	-	-	55,84 г/моль

Из всех приведенных комбинаций единственная разумная x = 4 и y = 6, где получается масса, соответствующая железу, при этом стехиометрия соответствует двухвалентному металлу, что хорошо согласуется и с упомянутым в условии задачи цветом сульфата. Таким образом, $\mathbf{M_2} - \mathrm{Fe}$, $\mathbf{A_2} - \mathrm{FeSO_4}$ и $\mathbf{K_2} - \mathrm{K_4}[\mathrm{Fe}(\mathrm{CN})_6]$.

При взаимодействии растворов комплексов K_1 и K_2 наиболее вероятно, что протекает реакция ионного обмена (реакция обмена лигандов маловероятна с учетом того, что аммиачные комплексы не характерны для железа, а редокс процессы с участием комплексообразователей в данной паре также маловероятны):

$$2[Ni(NH_3)_6](OH)_2 + K_4[Fe(CN)_6] \rightarrow [Ni(NH_3)_6]_2[Fe(CN)_6] \downarrow +4KOH$$

Данное предположение можно проверить с помощью массовой доли железа в полученном комплексе. Она составляет:

$$\omega(\text{Fe}) = \frac{55,85}{55,85 + 58,69 \times 2 + 26,02 \times 6 + 17,03 \times 12} \times 100\% = 10,46\%$$

Полученное число согласуется с данными задачи. Значит, \mathbf{K}_3 – $[Ni(NH_3)_6]_2[Fe(CN)_6]$.

При взаимодействии металлов с угарным газом могут образоваться карбонилы металлов. Для определения формул \mathbf{K}_4 и \mathbf{K}_5 следует воспользоваться массовыми долями кислорода. С учетом того, что в карбонилах соотношение углерода к кислороду составляет 1:1, то массовые доли углерода будут равны:

$$\omega(C) = \frac{\omega(0)}{M(0)} \times M(C)$$

Откуда получаем 28,13% и 30,66% для комплексов $\mathbf{K_4}$ и $\mathbf{K_5}$ соответственно. Остальная масса приходится на комплексообразователь, значит, массовая доля металла $\mathbf{M_1}$ в $\mathbf{K_4}$ составляет 34,39%, а металла $\mathbf{M_2}$ в $\mathbf{K_5}$ – 28,50%. Из массовых долей можно получить формулы комплексов: $\mathbf{K_4}$ – [Ni(CO)₄], $\mathbf{K_5}$ – [Fe(CO)₅].

2. При растворении металлов в растворах цианидов обычно получаются цианидные комплексы. При термическом разложении таких комплексов единственный газ, относящийся к «псевдогалогенам», который может получится, — это дициан, т.е. $A_3 - C_2N_2$.

Для установления металла M_3 и формулы K_6 можно поступить таким же образом, как в п.1, обозначив за x число атомов натрия, а за y – число цианид-ионов. Тогда:

$$M(M_3) = \frac{xM(Na) + yM(CN)}{1 - \omega(M_3)} - (xM(Na) + yM(CN))$$
$$= \frac{22,99x + 26,02y}{0,2758} - (22,99x + 26,02y)$$

Составим таблицу:

	y = 2	y = 4	<i>y</i> = 6
x = 1	197,02 г/моль	333,66 г/моль	-
x = 2	-	394,03 г/моль	-
x = 3	-	454,40 г/моль	591,05 г/моль
x = 4	-	-	651,41 г/моль

Из таблицы видно, что получается единственный разумный вариант 197,02 г/моль, что соответствует золоту. Таким образом, $\mathbf{M_3}$ — Au и $\mathbf{K_6}$ — Na[Au(CN)₂].

Из условия задачи ясно, что M_4 – это достаточно активный амфотерный металл. Для его установления можно поступить уже упомянутым способом, обозначив число ионов натрия за x, а число гидроксогрупп – за y. Тогда:

$$M(M_4) = \frac{xM(Na) + yM(OH)}{1 - \omega(M_4)} - (xM(Na) + yM(OH))$$
$$= \frac{22,99x + 17,01y}{0,6355} - (22,99x + 17,01y)$$

Координационное число два не характерно для гидроксокомплексов, поэтому

	y = 4	<i>y</i> = 6
x = 1	52,21 г/моль	-
x = 2	65,40 г/моль	-
x = 3	78,58 г/моль	98,10 г/моль
x = 4	-	111,28 г/моль

Единственный разумный вариант, соответствующий амфотерному металлу, это 65,40 г/моль. Значит, $\mathbf{M_4} - \mathbf{Zn}$, а $\mathbf{K_8} - \mathbf{Na_2}[\mathbf{Zn}(\mathbf{OH})_4]$. При реакции цинка с цианидным комплексом золота получится цианидный комплекс цинка, $\mathbf{K_7} - \mathbf{Na_2}[\mathbf{Zn}(\mathbf{CN})_4]$.

3. Уравнения реакций образования комплексов K_6 и K_8 , а также термического разложения K_6 :

$$2Au + 4NaCN + 0,5O_2 + H_2O = 2Na[Au(CN)_2] + 2NaOH$$

$$2Na[Au(CN)_2] = 2NaCN + 2Au + C_2N_2$$

$$Zn + 2NaOH + H_2O = Na_2[Zn(OH)_4] + H_2$$

Система оценивания:

- **1.** Ответ на первый вопрос **14 баллов** (по **1 баллу** за металлы M_1 и M_2 , а также за вещества A_1 и A_2 ; по **2 балла** за формулу комплексов K_1 - K_5 , подтвержденную расчетом, если нет расчета по **1 баллу** за правильную формулу).
- **2.** Ответ на второй вопрос **8 баллов** (по **1 баллу** за металлы **M**₃ и **M**₄, а также за формулы газа **A**₃ и комплекса **K**₇; по **2 балла** за формулу комплексов **K**₆ и **K**₈, подтвержденную расчетом, если нет расчета по **1 баллу** за правильную формулу).
- **3.** Уравнения трех реакций **3 балла** (по **1 баллу** за уравнение с правильными коэффициентами).

ИТОГО: 25 баллов.

Задача 2. Друзья и соседи

1. Металлы лучше определять, опираясь на чистые продукты галогенирования. Металл \mathbf{X} определим по продукту хлорирования \mathbf{X}_3 : из 3,000 г \mathbf{X} получено 9,136 г \mathbf{X}_3 , то есть массовая доля хлора равна (9,136-3,000)/9,136=0,6716. Поскольку в общем виде хлорид имеет формулу XCl_n , то:

$$0,6716 = \frac{35,45n}{35,45n+x}.$$

Из данного соотношение получим x = 17,33n. Единственный разумный вариант получается при n = 3: x = 51.99, X - Cr, $X_3 - CrCl_3$.

По массе бромида хрома получим, что массовая доля хрома в нем равна 3/16,887 = 0,1777, а значит молярная масса $CrBr_n$ равна 52/0,1777 = 292,7, что соответствует $CrBr_3$ (вещество X_4).

Для смеси фторидов и смеси иодидов найдем усредненные по смеси формулы $CrHal_x$, учитывая, что x окажется дробным, так как будет найден как среднее для смеси.

Для фтора: массовая доля хрома в смеси CrF_x равна 3/7,558 = 0,3969, средняя молярная масса CrF_x равна 52/0,3969 = 131 = 52 + 19x, x = 4,16. Значит, это смесь фторидов CrF_4 и CrF_5 (CrF_6 неустойчив).

Для иода: массовая доля хрома в смеси CrI_y равна 3/22,422 = 0,1338, средняя молярная масса CrI_y равна 52/0,1338 = 388,6 = 52 + 126,9y, y = 2,65. Значит, это смесь иодидов CrI_2 и CrI_3 .

Итак, X - Cr, X_1 и $X_2 - CrF_4$ и CrF_5 , $X_3 - CrCl_3$, $X_4 - CrBr_3$, X_5 и $X_6 - CrI_2$ и CrI_3 .

Соседом хрома по подгруппе является только молибден (Y).

Состав фторида, хлорида и бромида, а также смеси иодидов определим аналогично, используя массовые доли молибдена в чистых веществах и смесях.

Для фторида: $\omega(\text{Mo}) = 2/4,376 = 0,4570, M(\text{MoF}_n) = 95,95/0,457 = 209,94,$ $\mathbf{Y_1} - \mathbf{MoF}_6.$

Для хлорида: $\omega(\text{Mo}) = 2/5,695 = 0,3512, M(\text{MoCl}_n) = 95,95/0,3512 = 273,22,$ $\mathbf{Y_2} - \mathbf{MoCl}_5.$

Для бромида: $\omega(\text{Mo}) = 2/8,662 = 0,2309, M(\text{MoBr}_n) = 95,95/0,2309 = 415,56,$ **Y**₃ – **MoBr**₄.

Для смеси иодидов: $\omega(\text{Mo}) = 2/9,498 = 0,2106, M_{\text{cp}}(\text{MoI}_x) = 455,67, x = 2,83,$ смесь $\mathbf{Y_4}$ и $\mathbf{Y_5} - \mathbf{MoI_2}$ и $\mathbf{MoI_3}$.

- 2. Поскольку решение Айдара в действительности также заключалось бы в переборе возможных степеней окисления металла, то длительность его решения обусловлена тем, что молибден имеет более высокие степени окисления в галогенидах, а потому его перебор был дольше.
- **3**. Количество хрома, подвергшегося окислению: n = 3/52 = 0,05769 моль. Пусть из них x моль превратилось в CrI_2 , тогда 0,05769 x моль превратилось в CrI_3 . Тогда:

$$305.8x + (0.05769 - x) \cdot 432.7 = 22.442.$$

Решением данного уравнения является x = 0.0199 моль.

$$m(CrI_2) = 305,8x = 6,073 \ \Gamma.$$

 $m(CrI_3) = 22,442 - 6,073 = 16,369 \ \Gamma.$

4. Иод в степени окисления +5 в щелочной среде образует иодат натрия, NaIO₃. Хром в высшей степени окисления в щелочной среде образует хромат натрия, Na₂CrO₄. При уравнивании стоит учесть, что CrI₂ суммарно теряет 16 электронов как восстановитель, а CrI₃ -21 электрон.

Уравнения реакций:

$$CrI_2 + 8NaClO + 4NaOH \rightarrow Na_2CrO_4 + 2NaIO_3 + 8NaCl + 2H_2O$$

 $2CrI_3 + 21NaClO + 10NaOH \rightarrow 2Na_2CrO_4 + 6NaIO_3 + 21NaCl + 5H_2O$

5. Хром, согласно условию, окисляется до хрома в степени окисления +3, то есть до оксида Cr_2O_3 . Айдар выбирал между окислением молибдена до Mo_2O_3 и до MoO_3 , при этом масса смеси однозначно свидетельствует в пользу MoO_3 : это означает, что масса смеси, указанная в условии, не может соответствовать смеси Cr_2O_3 с MoO_3 , но может соответствовать смеси Cr_2O_3 с MoO_3 .

Возможные значения массы смеси оксидов, образующихся из 10,00 г смеси хрома с молибденом, ограничены значениями для чистого хрома и чистого молибдена.

Рассчитаем массовые доли металлов в оксидах:

 $\omega(\text{Cr B Cr}_2\text{O}_3) = 52 \cdot 2/152 = 0,6842,$

 $\omega(\text{Mo B Mo}_2\text{O}_3) = 95,95 \cdot 2/239,9 = 0,7999,$

 $\omega(\text{Mo B MoO}_3) = 95,95/143,95 = 0,6666.$

Тогда 10 г смеси хрома с молибденом при превращении в смесь Cr_2O_3 с Mo_2O_3 образуют смесь оксидов массой от 10/0,7999 = 12,50 г до 10/0,6842 = 14,61 г. А при превращении в смесь Cr_2O_3 с MoO_3 смесь оксидов массой от 14,61 г до 10/0,6666 = 15,00 г.

Значит, масса, указанная в условии, попадает в диапазон **от 14,61 г до 15,00 г**.

6. По условию, Ильдар перепутал металлы в формулах оксидов, то есть считал, что образуется смесь CrO_3 с Mo_2O_3 . И Ильдар, и Айдар могли записать уравнения для количества вещества хрома и молибдена в смеси: если в 10 г смеси было x моль хрома и y моль молибдена, то:

$$52x + 95,95y = 10,00.$$

Второе уравнение у них было разным. В решении Айдара: образовалось 0.5x моль Cr_2O_3 и у моль MoO_3 общей массой m, то есть:

$$152 \cdot 0.5x + 143.95y = m.$$

В решении Ильдара образовалось x моль CrO_3 и 0.5y моль Mo_2O_3 , то есть:

$$100x + 0.5y \cdot 239.9 = m.$$

С учетом того, что ответ у ребят получился одинаковый, то обозначения в этих уравнениях можно считать совпадающими. Значит, можно решить систему из трех уравнений с тремя неизвестными. Получим: x = 0.0676 моль, y = 0.0676 моль y = 0

Система оценивания:

- **1.** Формулы X_{1-6} , Y_{1-5} по **1 баллу**. Всего **11 баллов**. Металлы X и Y отдельно не оцениваются.
- **2.** Упоминание перебора и более высокой степени окисления молибдена по **0.5 балла**. Всего **1 балл**.
 - 3. Массы компонентов по 2 балла. Всего 4 балла.
- **4.** 2 уравнения реакций по **2 балла**. Всего **4 балла**. С неверными коэффициентами по **1 баллу**.
 - **5.** Диапазон масс **2 балла**.
 - **6.** Масса смеси **3 ба**лла.

ИТОГО: 25 баллов.

Задача 3. Скованные одной цепью

1. Реакция 4 получается сложением реакции 3 и реакции, обратной реакции 1:

$$H \cdot + Cl_2 + 2Cl \cdot \rightarrow HCl + Cl \cdot + Cl_2$$
 или $H \cdot + Cl \cdot \rightarrow HCl$

Значит,

$$\Delta H_4 = \Delta H_3 - \Delta H_1 = -189,3 - 242 = -431,3$$
 кДж/моль.

Аналогично, реакция $H_2 + Cl_2 \rightarrow 2HCl$ является суммой реакций 2 и 3, значит,

$$\Delta H = \Delta H_3 + \Delta H_2 = -189,3 + 4,7 = -184,6$$
 кДж/моль.

2. Энергия связи в Cl_2 соответствует реакции $Cl_2 \rightarrow 2Cl$, то есть $E_{cs}(Cl_2) = \Delta H_1 = 242$ кДж/моль.

Энергия связи в HCl соответствует реакции HCl \rightarrow H· + Cl·, то есть $E_{\rm cB}$ (HCl) = $-\Delta H_4 = 431,3$ кДж/моль.

Энергию связи в молекуле водорода можно выразить из реакции 2:

$$\Delta H_2 = E_{\rm cb}({
m H_2}) - E_{\rm cb}({
m HCl})$$
 $E_{\rm cb}({
m H_2}) = \Delta H_2 + E_{\rm cb}({
m HCl}) = 4,7 + 431,3 = {
m 436}$ кДж/моль.

- 3. Водород наиболее тяжело реагирует **с иодом**. Это связано с тем, что связь H–I наименее прочная среди галогеноводородов, и продукт слишком неустойчив.
- **4**. Наиболее активно водород реагирует **с фтором**. Это связано с низкой энергией связи в молекуле F_2 (поэтому реакция протекает без дополнительного инициирования) и высокой прочностью связи H–F.
 - 5. 1) Рассчитаем число поглощенных смесью фотонов:

$$N = \frac{E}{E_{\phi}} = \frac{0.2}{6.2 \cdot 1.6 \cdot 10^{-19}} = 2.02 \cdot 10^{17}.$$

Поскольку каждый фотон вызывает образование 2 атомов хлора, то

$$N_{\rm Cl} = 2N = 4.04 \cdot 10^{19}$$
.

2) Поскольку каждый атом хлора вступает в реакцию обрыва цепи с вероятностью 0.05%, вероятность его участия в реакции продолжения цепи составляет 99.95%, то есть на 1 стадию обрыва цепи в среднем будет приходиться 99.95/0.05 = 1999 стадий продолжения цепи. Значит, в среднем каждый активный атом хлора продолжит цепь 1999 раз, поэтому длина цепи составляет 1999.

Примечание: За ответ 2000, учитывающий в длине цепи также стадию обрыва цепи, ставится полный балл.

3) За каждый цикл цепи выделяется, согласно механизму, 2 молекулы HCl, значит, в среднем каждый образовавшийся активный атом хлора вызовет образование 1999.2 = 3998 молекул HCl.

$$N_{
m HCl}=3998N_{
m Cl}=1,61\cdot 10^{21}$$
 $n_{
m HCl}=N_{
m HCl}$ / $N_{
m A}=0,00267$ моль $m_{
m HCl}=n_{
m HCl}M_{
m HCl}=\mathbf{0,0976}~\Gamma=\mathbf{97,6}~{
m M}\Gamma.$

Система оценивания:

- 1. Две энтальпии по 3 балла. Всего 6 баллов.
- **2.** Энергии связи в Cl_2 и HCl- по **1 баллу**, энергия связи в H_2- **2 балла**. Всего **4 балла**.
 - 3. Выбор галогена и объяснение по 1,5 балла. Всего 3 балла.
 - 4. Выбор галогена и объяснение по 1,5 балла. Всего 3 балла.
- 5. Расчет числа атомов хлора **3 балла**. (если рассчитано число фотонов, но неверно рассчитано число атомов хлора **1,5 балла**). Расчет длины цепи **3 балла**. Расчет массы HCl = 3 балла. Всего **9 баллов**.

ИТОГО: 25 баллов.

1. Структурная формула H₄SiO₄:

Форма аниона, исходя из модели Гиллеспи – тетраэдрическая.

2. Поскольку все атомы кислорода являются либо мостиковыми, либо концевыми (то есть присутствуют в виде ОН-групп), можно все формулы записать в виде $Si_n(OH)_mO_p$, тогда p будет числом мостиковых атомов кислорода, а m — числом концевых. Также для заполнения пропусков понадобится учесть нейтральность молекул: 4n = m + 2p.

В таблице ниже заполненные пропуски выделены жирным и красным цветом. Для удобства также представлена запись всех кислот в виде $Si_n(OH)_mO_p$ (она не оценивается).

№	Молекула	Альтернативная	Число мостиковых	Число концевых
	Молекула	запись	атомов кислорода	атомов кислорода
1	$H_6Si_2O_7$	Si ₂ (OH) ₆ O	1	6
2	$H_8Si_3O_{10}$	Si ₃ (OH) ₈ O ₂	2	8
3	H ₆ Si ₃ O ₉	Si ₃ (OH) ₆ O ₃	3	6
4	H ₁₀ Si ₄ O ₁₃	Si ₄ (OH) ₁₀ O ₃	3	10
5	$H_8Si_4O_{12}$	Si ₄ (OH) ₈ O ₄	4	8
6	H ₄ Si ₄ O ₁₀	Si ₄ (OH) ₄ O ₆	6	4
7	$H_{10}Si_5O_{15}$	Si ₅ (OH) ₁₀ O ₅	5	10
8	$H_8Si_8O_{20}$	Si ₈ (OH) ₈ O ₁₂	12	8

Каждая клетка, содержащая пропуски, оценивается независимо.

3. Видно, что молекулы $H_6Si_2O_7$, $H_8Si_3O_{10}$ и $H_{10}Si_4O_{13}$ отличаются на группу « H_2SiO_3 » (такая группа, на которую отличаются гомологи в ряду, называется гомологической разностью). Значит, следующий член этого ряда — $H_{12}Si_5O_{16}$.

Такая молекула, исходя из нашего подхода в п. 2, содержит 12 ОН-групп и 4 мостиковых атома кислорода, которые и соединяют 5 атомов кремния. Структурная формула:

4. Видно, что молекула $H_8Si_4O_{12}$ содержит цикл, поскольку на 4 атома кремния приходится 4 мостиковых атома кислорода. В таком случае 2 изомера отличаются размером цикла: в одном он шестичленный и содержит 1 атом кремния в ответвлении от цикла, а в другом — восьмичленный и включает все 4 атома кремния.

Структурные формулы изомеров:

5. Аналогично, молекулы $H_{10}Si_5O_{15}$ должны быть циклическими. Для такого состава возможен десятичленный цикл, включающий все 5 атомов кремния; восьмичленный цикл, включающий 4 атома кремния и имеющий ответвление из 1 атома кремния; шестичленный цикл, включающий 3 атома кремния и либо 1 ответвление из 2 атомов Si, либо 2 ответвления из 1 атома кремния (причем, либо

при одном и том же, либо при различных атомах кремния в цикле). Итого получается 4 изомера.

Примечание: Заметим, что для изомера с шестичленным циклом и 2 ответвлениями при разных атомах цикла формально возможна стереоизомерия, аналогичная стереоизомерии диметилциклопропанов. Если участник олимпиады упомянет этот тип изомерии и даст ответ 5 или 6 (с учетом энантиомеров), то ответ все еще считается верным. Ответы 5 или 6 без соответствующей аргументации не считаются верными.

6. 4 атома кремния и 6 мостиковых атомов кислорода можно упаковать в следующую систему, в которой все циклы – шестичленные:

Если завершить эту структуру ОН-группами, то получится молекула $H_4Si_4O_{10}$:

Такая структура принимается как верная. В действительности молекула, конечно, не плоская, а имеет форму, аналогичную, например, молекуле P₄O₁₀:

7. Структурная формула молекулы №8:

Система оценивания:

- 1. Структурная формула и указание формы по 1 баллу. Всего 2 балла.
- 2. Каждая клетка, содержащая пропуск по 1 баллу. Всего 13 баллов.
- 3. Молекулярная и структурная формулы по 1 баллу. Всего 2 балла.
- 4. Структурные формулы 2 изомеров по 1 баллу. Всего 2 балла.
- **5.** Число изомеров -2 **балла**.
- **6.** Структурная формула **2 балла**.
- **7.** Структурная формула **2 балла**.

ИТОГО: 25 баллов.